
Setting development tools - for Programming 1

Grzegorz Ostrek, Rafał Jóźwiak

October 6, 2017

Abstract

Presenting introduction to development tools settings for Program-
ming 1 students is the aim of this document. We briefly describe cho-
sen compilers and Integrated Development Environments. Essential
steps for writing simple programs are shown. Document is not in-
tended to contain comprehensive documentation which is available in
respective software sources. The document is work in progress, please
report mistakes or suggested improvements g.ostrek@mini.pw.edu.pl.

Contents

1 Introduction 2

2 Microsoft Visual Studio 2
2.1 Solution . 3
2.2 Command Line Tools . 10
2.3 Passing parameters to program 11
2.4 Debugging . 12

3 *nix systems 13

4 Other IDEs 18

5 Documentation 19

1

mailto:g.ostrek@mini.pw.edu.pl

1 Introduction

To write command line programs we need a text processor and compiler.
These two programs are often bundled, as the edit-compile-run-debug cycle
in production is rather tedious when using it separated. We can find many
Integrated Development Environments (IDEs for short) that make the cycle
easier, but may demand additional steps at the beginning of development
process. Advantages of the IDEs are syntax highlighting, keyword comple-
tion, revision control, and many more although some of these features can
be found in advanced text processors like Notepad++, Komodo, Emacs or
Vi which have ability to run compilation tools chain. Fast solution is to try
online compilers like wandbox.org.
We are assuming a simple Hello World example for first program.

#include <s t d i o . h>

int main (){
p r i n t f (” He l lo world\n”) ;
return 0 ;

}

Remember about at least one \n in last printf instruction to force output
on console and new line (enter or return key) as last character in file.

2 Microsoft Visual Studio

Microsoft Visual Studio (VS) can be acquired through MSDN AA Univer-
sity access1 or from Microsoft product’s site2. Presented examples are created
with a Visual Studio 2010 C++ Express and generally applies to other ver-
sions and editions of VS.
In the Programming 1 Laboratory there are VS 2008, 2010, 2012, 2013 and
2015 and 2017 installed.

On 12 November 2014, Microsoft announced Visual Studio Community
version. It have similar functionalities to Visual Studio Professional. Un-
like, the previous free VS version namely Express edition, Visual Studio

1(http://e5.onthehub.com/WebStore/Welcome.aspx?ws=
87581f2b-b28b-e011-969d-0030487d8897
2http://www.visualstudio.com/downloads/download-visual-studio-vs

2

wandbox.org
(http://e5.onthehub.com/WebStore/Welcome.aspx?ws=87581f2b-b28b-e011-969d-0030487d8897
(http://e5.onthehub.com/WebStore/Welcome.aspx?ws=87581f2b-b28b-e011-969d-0030487d8897
http://www.visualstudio.com/downloads/download-visual-studio-vs

Figure 1: Starting project wizard.

Community supports multiple languages, and provides support for exten-
sions. Visual Studio Community is oriented towards individual developers
and small teams3. What is important Community edition is free for
educational purposes .

To install VS2013 to 2017 community editions please go to https://www.
visualstudio.com/downloads/download-visual-studio-vs and click proper
version under Visual Studio downloads (on the left side in the middle of
the page) and choose format: web installer or ISO download. This is register-
ware software so you will have to create Microsoft account (e.g. hotmail email
account is sufficient or sign up http://live.com). After installation please
check and install recent updates (i.e. by Windows update or by https://
www.visualstudio.com/downloads/download-visual-studio-vs) for VS.
ISO Requires burning DVD or an optical device emulator like http://wincdemu.
sysprogs.org.

2.1 Solution

In VS, project is described as solution, one solution may link to the other
projects and workspaces.

3https://en.wikipedia.org/wiki/Microsoft_Visual_Studio

3

https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/downloads/download-visual-studio-vs
http://live.com
https://www.visualstudio.com/downloads/download-visual-studio-vs
https://www.visualstudio.com/downloads/download-visual-studio-vs
http://wincdemu.sysprogs.org
http://wincdemu.sysprogs.org
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio

Figure 2: Selecting project type in VS2017.

After installing VS, we can create first project by following steps. First start
project wizard with File → New Project Fig. 1.
Starting from VS2017 there is no Win32 application wizard.

Please use Empty Project 2. Here steps suggested steps for VS2017 are
described followed by procedure common for previous versions. Add new file
to solution by right click Source filter in Solution Explorer (left side of VS
window) and add new file with extension .c 2. Right click on ProjectName
in the Solution Explorer window select Properties and change settings as
described in Figure 4. SDL option switch security setting for unsafe func-
tions like scanf and force using scanf s. Recommended is no. You can add
#define CRT SECURE NO WARNINGS before any #include in each file.
Setting console typ should avoid command line window disappearing. Other
method is to use system(“pause”) or getchar() as last instruction before re-
turn. Then select from installed Visual C++ templates Win32 Console Ap-
plication Fig. 5, the name of project must be specified and will be used to cre-
ate subfolder (if checkbox is selected) in Location directory. Solution name is
the project name by default and can by changed. In next two windows select

4

Figure 3: Adding new file Source.c in VS2017.

Figure 4: Settings in VS2017.

5

Figure 5: Selecting project type.

Figure 6: Selecting application settings.

6

Figure 7: Adding files to project.

Console Application and Empty project Fig. 6. Then add new file by right
clicking on Source in Solution Explorer view and Adding New Item shown of
Fig. 7. When specifying name for new item ensure that extension is .c that
sets compilation for C code – in case of .cpp files C++ compilation is done.
There is no option to select .c extension but manual input works, see Fig. 8.
Note that new item is saved in subdirectory of project location. Adding more
files and headers can be made similarly - all files found in Solution Explorer’s
Source Files are compiled during solution building. Existing source files can
be added as well. Then code can be edited and saved to the created file.
Last two steps are building and executing code. Build can be done by select-
ing Build → Build solution from menu: 1 in Fig. 10. After successful code
generation information in output window appear and running executable by
Debug → Start without debugging show new console window with program
results - 2 and 3 in Fig. 10. Building can create output files with debugging
symbols or optimized for production purposes - selection is made by setting
Debug/Release build mode in toolbar dropbox. Executable files are created
in Debug or Release subdirectories in project location - information about

7

Figure 8: Specifying name.

Figure 9: Code input.

8

Figure 10: Building file.

9

executable location is included in output window. Careful reading the output
gives information about possible mistakes in code - typo, matching braces,
not found identifiers (function or variable name). A code auto completion
is triggered with starting letters of keyword : function name, variable name
(and Ctrl-Space pressing in VS2008), see Fig. 10. Proper header file must be
included to invoke searching matching name - in case of scanf() it is declared
in stdio.h header file. Compiler option can be set by right-clicking on project
name under solution in Solution Explorer view and choosing Properties (last
option).
Any customization can be made with Menu → Tools → Options... window.
Switching between programming languages settings (e.g. C++ and C#) need
its importing with Menu → Tools → Import and Export Settings.... To turn
on line numbers Menu→ Tools→ Options... from left hand tree Text Editor
→ C/C++ → General and under Display section check Line numbers.

2.2 Command Line Tools

Visual Studio comes with Visual Studio Command Prompt which can be
found under Start→ Visual Studio XXXX→ Visual Studio Tools. Main task
of the Visual Studio Command Prompt is setting environmental variables in
console which are used by VS compiler named cl. Running simple cmd doesn’t
comes with compiler name known, only %PATH% value is set in this case.
To check if compiler works type following command in the console.

cl /?

It allow to compile files without need to create VS solution. Using it is similar
to *nix with respect to compiler name - please use adjusted instructions from
section 3; creating directory command is md, printing working directory is
not necessary as it is already in prompt line. Output executable file name
is same as compiled .c file name, so running is just typing the name with
.exe extension. Example of running HelloWorld.exe example is presented in
Fig. 11.

Remember that paths containing a space character should be inside a
parentheses ”c:\path to source\here”. Changing current drive letter is made
by calling eg. d: in console (for moving to drive D).

10

Figure 11: Compiling and running an example helloworld.c program.

2.3 Passing parameters to program

Example of utilizing command line arguments is presented in the following
listing.

#include <s t d i o . h>

int main (int argc , char *argv []) {
int i ;
p r i n t f (”name o f the program : %s\n” , argv [0]) ;
for (i = 1 ; i < argc ; i++) {

p r i n t f (”argument %d : %s \n” , i , argv [i]) ;
}
return 0 ;

}

Main function takes two parameters which actual values are passed when
program is started. Example of running cmdline program with parameters:
a, 1 and ’hello’ is presented in Fig. 12. Each parameter is stored in array
terminated with a ‘\0‘, and argv[] argument stores pointer to such arrays

11

Figure 12: Compiling and running an example cmdline.c program.

on indexes 1 to argc-1. First pointer stores name of the program (name of
executable file).

Under Visual Studio IDE command line arguments can be passed by set-
ting workspace properties. Chose Alt-F8 or Menu → Project → <project
name> Properties (last item), or mouse right click on workspace (under so-
lution) and chose <project name> Properties (last item) to open the project
property pages. Then select Debugging in the tree on the left side and place
arguments in Command arguments edit field (cell next to blue highlighted
one) shown in Fig.13.

2.4 Debugging

Selecting Debug build mode allow to track program’s execution step-by-step.
Program can be stopped on selected instruction or under given condition.
Selecting code instructions where program flow should stop is done by clicking
on the gray bar left from a source code editor what cause a red dot to appear
- its mean that a breakpoint is set in the program. When breakpoint is
set then calling menu Debug → Start Debugging (or F5) result in execution
interrupt before instruction selected by breakpoint. VS view after debugging
is started is presented on Fig. 14. Current program position is marked by a
yellow arrow placed on the red dot in Fig. 14. At the bottom are placed Local
and Stack views. Local contain variables present in current scope (block),
Stack gives information about functions calls. Additional names also can be
tracked in Watch window, also array view is possible as presented in Fig. 15

12

Figure 13: Setting project properties to pass command line arguments in VS.

Continuing debugging goes to next breakpoint hit, other options to follow
execution is Debug → Step [Into—Over—Out]. Variable which value has
changed between breakpoint hits is marked with red color, as presented in
Local window in Fig. 16.

3 *nix systems

As *nix systems are described : commercial Unix, BSD, Darwin (Apple) and
Linux distributions. Creating programs in *nix systems is easy as most distri-
butions comes with compiler and text processors preinstalled. The compiler
is GNU C Compiler which is available as gcc command and popular editors
are gedit, kedit or other distribution’s favorite one. In the Laboratory there
is ARCH Linux distribution with gcc 4.8 with Xfce window manager, Vim,
Emacs, and Leafpad. To check what compiler is installed and its version run
in your command line interface (shell,terminal).

gcc -v

13

Figure 14: VS debugging mode.

14

Figure 15: After setting Watch and continue debugging.

15

Figure 16: After 2 time continue step.

16

If previous command not working consult you distribution manual for in-
stalling software (in devel version with included headers, in some cases)
Recommended is working under designated directory where source file and
output executable will be created, so create new with

mkdir ∼/Programming1

Change your working directory

cd ∼/Programming1

Check current working directory with print working directory command pwd

pwd

Create empty file and/or open it in available editor and write a Hello World
code.

touch proj1.c

To compile file just:

gcc proj1.c

If everything passed OK executable named a.out is created in the working
directory. To run it type

./a.out

If you wish different output name use compilator’s option -out filename (ex-
tension .out is not needed)

gcc proj1.c -out proj1

then to run it:

./proj

When compiling few files, its names should be listed as parameters. Problems
may arise when trying compile .cpp file with gcc as extensions says compiler
how to treat code inside.

17

4 Other IDEs

Other IDEs that can be used for programming. Presented is only general
information as these tools are not fully supported in the Laboratory.

Eclipse, NetBeans

If you familiar with Java IDEs, there are plugin for C/C++ compilers usage.
Only NetBeans is available in Laboratory under Windows but is not ini-
tially configured. Both configured IDEs are available under Linux. Further
descriptions and configuration TODO if needed. (usualy have to play with
vcx86 64vars compiler variables).

CBlocks

Project creation idea is similar to VS, please remember to choose C project
type. http://www.codeblocks.org/Use version bundled with mingw http:
//sourceforge.net/projects/codeblocks/files/Binaries/12.11/Windows/
codeblocks-12.11mingw-setup.exe this includes GNU C Compiler win-
dows port. Available under Linux in the Laboratory. http://www.cprogramming.
com/code_blocks/
Changing console runner settings is demanded:

� choose Menu → Settings → Environment

� in General settings find Terminal to launch console programs:

� change xterm - T $TITLE -e to xfce4-terminal -T $TITLE -x

DevCpp

Project creation idea is similar to VS, please remember to choose C project
type. Contain quite outdated version of GCC. http://www.bloodshed.net/
devcpp.html Only Windows, not available in the Laboratory.

Other

The Laboratory Linux have Geany and Anjunta IDEs installed.

18

http://www.codeblocks.org/
http://sourceforge.net/projects/codeblocks/files/Binaries/12.11/Windows/codeblocks-12.11mingw-setup.exe
http://sourceforge.net/projects/codeblocks/files/Binaries/12.11/Windows/codeblocks-12.11mingw-setup.exe
http://sourceforge.net/projects/codeblocks/files/Binaries/12.11/Windows/codeblocks-12.11mingw-setup.exe
http://www.cprogramming.com/code_blocks/
http://www.cprogramming.com/code_blocks/
http://www.bloodshed.net/devcpp.html
http://www.bloodshed.net/devcpp.html

5 Documentation

http://c-faq.com/
http://en.cppreference.com
http://www.cplusplus.com
In *nix functions description is available by man function name .
Windows resources
https://msdn.microsoft.com/magazine/msdn-magazine-issues
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.
pdf
https://code.visualstudio.com/docs/getstarted/keybindings
https://channel9.msdn.com/Shows/C9-GoingNative/GoingNative-33-C-Refactoring-in-Visual-Studio-2015#
time=04m37s

19

http://c-faq.com/
http://en.cppreference.com
http://www.cplusplus.com
https://msdn.microsoft.com/magazine/msdn-magazine-issues
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://code.visualstudio.com/shortcuts/keyboard-shortcuts-windows.pdf
https://code.visualstudio.com/docs/getstarted/keybindings
https://channel9.msdn.com/Shows/C9-GoingNative/GoingNative-33-C-Refactoring-in-Visual-Studio-2015#time=04m37s
https://channel9.msdn.com/Shows/C9-GoingNative/GoingNative-33-C-Refactoring-in-Visual-Studio-2015#time=04m37s

	Introduction
	Microsoft Visual Studio
	Solution
	Command Line Tools
	Passing parameters to program
	Debugging

	*nix systems
	Other IDEs
	Documentation

