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Affine spaces and algebras of subalgebras 

A. PILITOWSKA, A. ROMANOWSKA AND J. D. H. SMITH 

Dedicated to the memory o f  Alan Day 

1. Introduction 

The algebras forming the main topic of this paper are modes, i.e. they are 
idempotent, in the sense that each singleton is a subalgebra, and they are entropic, 

i.e. each operation, as a mapping from a direct power of the algebra into the 
algebra, is actually a homomorphism. The two properties may be expressed 
algebraically by means of identities 

X "  " " X c o  = X ~  

X l l  �9 . . X l n c o  " . . X m l  �9 . . X m n c o c o  I = X I I  �9 . . X r n l  c o  I �9 . . X l n  �9 . . X r n n c o  t c o ~  

that are satisfied in each mode (A, f2), for any n-ary operation co and m-ary 
operation co' in O. Such algebras are studied in detail in [12]. (See also [11]-[16].) 
Given a mode (A, f2), as a set A with a set (2 of  operations co: A~~ on it, one 
may form the set (A, O)S or A S  of non-empty subalgebras of (A, O). This set A S  

carries an f~-algebra structure under the complex products 

co: AS~+ ~ AS;  (X~ . . . . .  X,o+) ~ {x~ . . . x~+co I xi E Xi }, 

and it turns out that the algebra (AS,  Q) is again a mode, preserving many of the 
algebraic properties of (A, ~) [12, 146], [13], [14]. 

One of the more important examples of modes is given by affine spaces (or 
affine modules) over ring R ([1], [2], [11], [12], [18]-[211). Affine spaces can be 
described as modes (E, _R, P) with binary operations _r for each r in R and one 
ternary Mal'cev (parallelogram-completion) operation P satisfying certain identities 
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[12]. In some cases some of the operations {P}~_R are defined by means of others 
and it is possible to give much more simple description of anne  spaces. 

In [11] modes of subspaces of anne  spaces over fields are investigated. The 
structure of certain reducts of such modes yields a direct, invariant passage from 
affine to projective geometry. The present paper continues the study set out in [ 11] 
and investigates modes of subspaces of anne  spaces over arbitrary commutative 
rings with unity. In Section 2, we present our approach to studying anne  and 
projective geometries and relationship between them. The main Section 3 is devoted 
to modes of subspaces of anne  spaces. It is shown that certain reducts of such 
modes may be constructed as Ptonka sums of reducts of anne  spaces over the 
corresponding projective space (Theorem 3.9). Some consequences of this fact are 
pointed out. In Section 4, we apply Theorem 3.9 to describe the structure of modes 
of subalgebras for several classes of modes, among them for quasigroup modes, 
pairs of orthogonal quasigroup modes, Mal'cev groupoid modes, and anne  spaces 
over fields. 

The notation and terminology of the paper is basically as in the book [ 12]. We 
refer the reader to the book for all undefined notions and results. The meanings of 
"term operation" and "derived operation" are the same. We use "Polish" notation 
for operations, e.g. co(x1, . . . ,  xn) denotes a word (term) with variables xl . . . .  , xn 
and then xl �9 - xnco denotes the induced derived (or term) operation in an algebra. 
Algebras and varieties are equivalent if they have the same derived operations. 

2. Affine spaces, projective spaces and ~-semilattices 

The algebraic approach to affine geometry here is that of [8], [12, 2.5] and [11]. 
Let R be a commutative ring with unity, and let (E, + ,  R) be a module over R. For 
each element r of R, define a binary operation 

r_: E x E ~ E;  (x,  y)  ~--~ x y r  =x(1  - r) + yr  

so that (E, _R) becomes an algebra with the set R = {r I r e R } of binary operations. 
On E, define the Mal'cev operation 

P: E x E x E - ~ E ;  ( x , y , z )  ~--~ x - y  + z. 

Then the algebra (E, _R, P) with the ternary operation P and set _R of binary 
operations has as its derived operations (those obtained from successive com- 
positions of the basic operations P and _r for r in R) precisely the anne  combina- 
tions )Clrl§ + x n r n  with r l §  + r n = l  of elements x l , . . . , x n  of E. It 
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follows that the algebra (E, R, P) is equivalent to the ful l  idempotent reduct 

(E, {xlrl  + . . .  + x n r  n ] r l , . . . ,  r n ~ R, Z?=1 ri = 1}) of the module E in the sense of 
[20, 4]. Note that the algebra (E, _R, P) has the anne  group as its group of 
automorphisms, and may thus be identified with the affine geometry (cf. [8], [7]). 
Carrying out this identification, we will refer to the algebra (E, R, P) as an affine 

space over R or an affine R-space. (Note, however, that such algebras have also 
been called affine modules [1], [2], [ 18 ] , . . . ,  [21].) The anne  space (E, _R, P) is said 
to be fai thful  if the module (E, + ,  R) is faithful. As was shown by Ostermann and 
Schmidt ([8], cf. [1], [12]), the class of affine spaces over the ring R forms a variety. 
According to [12], this variety is equivalent to the variety =R of Mal'cev modes 
(E, _R, P), algebras with the ternary Mal'cev operation P and one binary operation 
r for each r in R, satisfying the identities defining modes and for all 
p, q, r, s in R the identities 

(A1) x y x  P = yx2 ,  

(A2) xyp xyqr = xypqr, 

(A3) xyp xyq xyrP  = xypqrP, 

(A4) xyO = y x l  = x. 

If  2 is invertible in R, the identities (AI ) - (A4)  reduce to (A2) and (A4). The free 
=R-algebra on two generators is in fact the affine space (R, _R, P). Each subvariety of 
the variety =R is a variety of anne  spaces over a homomorphic image of the ring R. 
Thus the lattice of subvarieties of =R is dually isomorphic to the congruence lattice 
of the ring R. 

Projective space is considered here as the set L(E)  = (E, +,  R ) S  of submodules 
of the R-module (E, + ,  R), together with the semilattice operation +,  where 
for submodules U a n d  V o f  E, U + V = { u + v [ u ~ U , v ~ V }  is the sum of U 
and V. The inclusion structure is recovered from (L(E),  +)  via U < V iff U + 
V = V .  

Obviously each semilattice (H, +)  is a mode as well. We now recall two 
approaches to semilattices needed later in the paper. Let f2 be a non-empty domain 
of operations with an arity mapping -c: f2 ~ {n e N ] n > 1 }. A semilattice (H, +)  
may be considered as an Q-algebra (H, f2), a so-called f2-semilattice, on defining 
h l ' " h a + c o  = h l + " + h o +  for hi in H. The semilattice operation + is then 
recovered as h + k = h k .  �9 �9 kco for any co in f2. The semilattice (H, +)  may also be 
considered as a (small) category (H) with a set H of objects, and with a unique 
morphism h ~ k  precisely when h + k  = k ,  i.e. h <k .  
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3. Algebras of affine subspaces 

For an affine space (E, _R, P), consider the set (E, _R, P)S  or E S  of non-empty 
subalgebras of (E, R, P). The set E S  forms an algebra under the complex products 

r_: E S  x E S  ~ ES;  (X, Y)  ~ {xyr [ x ~ 32, y ~ Y} 

for r in R and 

P: E S  x E S  x ES- - ,  ES;  (X, Y, Z) w+ {xy zP  I x E X, y ~ Y, z ~ Z} .  

It turns out that the algebra (ES, R,  P) is again a mode preserving many of the 
algebraic properties of (E, _R, P) [12, 146]. In particular (ES, R, P) satisfies each 
linear identity (i.e. each identity for which the arguments appear at most once on 
each side) satisfied by (E, _R, P). 

In [11], for the case where R is a field, the internal structure of the (ES, R_, P) 

was described using the concept of a Ptonka sum ([9], [10], [12, 236]). This notion 
depends on viewing a semilattice (H, +)  both as a category and as an Q-algebra. 
Let (Q) denote the (concrete) category of Q-algebras and homomorphisms between 
them. Let F: (H) ~ (Q) be a functor. Then the Ptonka sum of the Q-algebras (hF, Q) 
for h in H over the semilattice (H, +)  by the functor F is the disjoint union 
H F  = U ( h F ] h  ~ H)  of the underlying sets hF, equipped with the D-algebra 
structure given, for an n-ary operation co in Q and ht . . . . .  hn, h = hi + " " " + hn in 
H, by 

co: h l F  • �9 " " • h~F--*hF; (xt ,  �9 �9 �9 x~) ~ xl(hl  -+h)F" " �9 x~(h, -+h)Fco. 

The canonical projection of the P|onka sum H F  is the homomorphism 
7~ F: (HF, ~2) ~ (H, Q) with restrictions ~F: hF ~ {h }. The subalgebras (hF, Q) = 

(rc~h, Q) of (HF, Q) are referred to as the Ptonka fibres. Recall that for Q-algebras 
in an idempotent irregular variety ~,  the identities satisfied by their Ptonka sums 
are precisely the regular identities holding in the fibres. On the other hand, the 
regularisation ~3 of ~,  the variety defined by all the regular identities true in ~,  
consists precisely of Ptonka sums of 23-algebras (cf. [9] and [12]). 

In [11], for R a field, one considered a certain subset Q~ of {P}wR. It was 
shown that the algebra ((E, _13, P)S, QR) is a Ptonka sum over the QR-semilattice 
(L(E),  QR) corresponding to the projective geometry (L(E), +).  The corresponding 
Ptonka fibres were shown to be quotient spaces of the affine space E. Certain 
considerations of convexity suggested particular choices for the set QR of operations 
of the reducts. In the more general case considered in this paper, the r61e of QR is 
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taken by the subset j o  u {P} of  _R u {P}, where j o  comprises the set of units r of 
R for which 1 - r  is also invertible. The motivation for choosing the set j o  is not 
only a desire to have an invariant passage from affine to projective geometry as in 
[11], but also to obtain an adequate description of the structure of  (ES, R_, P). We 
will prove that for each commutative ring R with unity, the algebra 
((E, R_, P)S, j_o, p) is a Ptonka sum of cosets of submodules of the module E over 
the J~ (L(E), j o) = (L(E), +). 

LEMMA 3.1. Let j o  = {r e R I r-I,  (1 - r )  -1 E R } .  Then for all r in j o ,  the 
elements r -l ,  (1 - r ) - 1  and 1 - r  of  R also lie in j o .  

Proof For r in j o ,  o n e  has 

( 1 - - r - 1 ) ' r ( r - - 1 )  1=1  and ( 1 - ( 1 - r ) - l ) . r - l ( r - 1 ) = l .  [] 

LEMMA 3.2. Let U, V, W, U1 . . . . .  Un be submodules of  the module E, and let 
r be in R. Then in (E, R_, P)S, one has: 

(i) (x + U)(y + V)r = xyr + UVr; 
(ii) (x + U)(y + V)(z + W)P = xyzP + UVWP = xyzP + (U + V +  W); 

(iii) for a derived operation w of R=, 

(Xl-~- U I ) " "  ( x  n -]- U n ) W  = X l  " " " X n W  Jr  U 1 " ' "  U n w ,  [] 

COROLLARY 3.3. Let  U be a submodule of E. Then for each R_ u {P}-word 
W ( X  1 . . . . .  X n ) ,  

(X 1 Jr U )  " " ( x  n -Jr- U ) w  = x 1 "" " x n w  Jr  U ,  [] 

COROLLARY 3.4. For a submodule U of E, the set {x + U Ix e E} is a 
subalgebra of ((E, _R, P)S, _R, P), and is an affine space over R. [] 

LEMMA 3.5. For submodules U, V of E and for r in j o ,  one has 

UVr = U +  V. 

Proof. If  r is in j o ,  then U = { u ( 1  - r ) - 1 ( 1  - r ) [ u  e U} _c U ( 1 - r ) .  Since 
obviously U ( 1 -  r)_.c U, it follows that U ( 1 -  r ) =  U. Similarly, one shows that 
Vr = V. Hence UVr_= U ( 1 - r )  + Vr = U + V. [] 

Note that if r is not in j o ,  the subset UV_r does not necessarily equal U + V. 
First observe that Ur may be different from U. Indeed, in 7/6, {0, 3} and {0, 2, 4} are 
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subgroups of Z 6 and {0, 3}4 = {0} r {0, 3}. Similarly {0, 2, 4)3 = {0} r {0, 2, 4}. 
Now in (Z6,_Z6, P)S, { 0 , 3 } { 0 , 2 , 4 } 3 = { 0 , 3 } 4 + { 0 , 2 , 4 } 3 = { 0 } + { 0 } = { 0 } r  
7/6 = {0, 3} + {0, 2, 4}. The operation 3 is not in _jo. In fact, for each (7/2,,, -Z2n, P), 
the set j o  is empty. Indeed, i f  for k, l in 7/2n, kl = 1, then both k and I are odd. But 
in this case, both 1 - k and 1 - l are even, and hence non-invertible. Note however 
that for submodules U, V of E and r in R, Ur is a submodule of U and UVr_ is a 
submodule of U + V. 

LEMMA 3.6. For each r in j o  the mapping 

~: (E, R_, P)S ~ L(E): x + U ~--~ U 

is an {r} ~ {P}-homomorphism. 

Proof. Follows by 3.2(i), 3.2(ii) and 3.5. [] 

LEMMA 3.7. For an affine space (E, R_, P) and r a unit of  R, the reducts 
(E, r, r -~) and (E, P) have no non-trivial semilattice quotients. 

Proof  The identity x = yyxr r -1 fails in every non-trivial {r, r 1}-semilattice. 
The identity x = xyyP fails in every non-trivial {P}-semilattice. [] 

PROPOSITION 3.8. For each r in J~ and for the functor F: (L(E)) ~ ({r}) with 
UF=zr - I (U)  and ( U ~  V)F: ~- I (U)  ~ - I ( V ) ;  x + U~-->x + V, the algebra 
((E, R_, P)S, r_) is the Ptonka sum of  r-reducts of  afJine R-spaces over the projective 
space (L(E), +) by the functor F. 

Proof. By 3.4, 3.6 and 3.7, z~ is an r-homomorphism onto the semilattice rep- 
lica (L(E), +)  of ((E, R, P)S, r). The fibres (~ I(U), _r) = ({x + U [ x ~ E}, r) 
are r-reducts of the aline spaces ({x + U Ix ~E} ,  R_, P). Further, by 3.2 and 
3.5, (x + U)( y + v ) r  = xyr_ + ( U + v )  = (x + ( U + v ) ) (  y + ( u + V))r = (x + u) (  u ~ 

U + V ) F ( y + V ) ( V ~ U + V ) F r _ .  Thus ((E, R_, P)S, r) is a Plonka sum as 
claimed. [] 

THEOREM 3.9. For an affine space (E, R, P) in _R_, each algebra ((E, R_, P)S, f2) 
o f  affine subspaces of(E,  R_, P), where f2 ~_ j o  u {P}, is a Ptonka sum of  (2-reducts o f  
affine R-spaces (E/U, R_, P) over the projective space (L(E), +) = ((E, +, R)S, +) by 
the functor F: (L(E)) ~(~2) with UF = {X + U Ix ~ E} and (U ~ V)F: UF--+ VF; 
x + U ~ - * x + V .  

Proof  The fact that ((E, _R, P)S, j o ,  p) is the Ptonka sum over (L(E), +)  by 
the functor F follows directly by Proposition 3.8 since 
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(x + U)(y + V)(z + W)P  : xyzP + (U + V + W) 

= (x + ( u +  v +  w))(y +(c~+ v +  w))(z + ( u +  v +  v/))P 

= (x + U)(U --+ U + V + W ) F ( y  + V) (V  --+ U + V + W) 

x F(z + W ) ( W  ~ U + V + W)FP. [] 

Note that by 3.7, if f2 contains at least one element r together with r -1, or if it 
contains P, then the Ptonka fibres in 3.9 are semilattice-indecomposable. 

Let ,~R be the variety generated by the _jo u {P}-reducts of the affine spaces 
(E, R, P). Then Theorem 3.9 shows that the algebras ((E, _R, P)S, j_o, p)  are in the 
regularisation ~R of ,3R. Note however that for r not in j o ,  a regular identity 
involving r that holds in (E, _R, P) does not necessarily hold in (ES, R_, P). Consider 
the affine space (7/6, _26, P). As shown before, the set jo+ is empty. So 2 is not in 
J~ 6. For p = 2, q = 1 and r = 2, the identity (A2) takes the form xy_2y-2 = xyO. But 
in 776 S, {0, 3}{0, 2, 4}-2{0, 2, 4}-2 = 7/6 96 {0, 3} = {0, 3}{0, 2, 4}0. It follows that in 
general the algebra (ES, R_, P) is not in the regularisation ~ of  the variety =R, and 
Theorem 3.9 does not describe the full _R u {P}-structure of ES. However, subse- 
quent corollaries show that in certain situations the operations _.!o u {P} provide an 
adequate description of the structure of the algebra of subalgebras of an affine 
space (E, _R, P). 

C O R O L L A R Y  3.10. Let R be a subring of  a commutative ring R', and let 
(E, R_', P) be an affine R'-space. For Q c _jo u {P}, let 2] be a variety of  Q-algebras 
equivalent to the variety R= o f  affine R-spaces. Then for (E, 62) in ~: 

(i) the algebra ((E, R_', P)S, 62) is a Ptonka sum of  quotients o f  (E, 62) over the 
semilattice ((E, +, R')S,  +);  

(ii) the algebra ((E, 62)S, 62) is a Ptonka sum of  quotients o f  (E, 62) over the 
semilattice ((E, +, R)S, +). [] 

Note that the Ptonka fibres in 3.10 are equivalent to affine R-spaces, and the 
algebras ((E, 62)S, 62) are in the regularisation {1 of ~3. 

C O R O L L A R Y  3.11. Let R be a subring of  a commutative ring R', and let 
(E, R_', P) be an affine R'-space. For 0 c_ j_o, let 2] be a variety of  62 ~ {P}-algebras 
equivalent to the variety R of  affine R-spaces. Then for (E, 62, P) in 2]: 

(i) the algebra ((E, R_', P)S, f2) is a Ptonka sum of  quotients o f  (E, Q) over the 
semilattice ((E, +, R')S, +);  

(ii) the algebra ((E, 62, P)S, f2, P) is a Ptonka sum o f  quotients o f  (E, 62, P) over 
the semilattice ((E, +, R)S, +). [] 
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4. Examples and applications 

In this section we give a list of examples of varieties of modes for which 
Theorem 3.9 and its corollaries describe the structure of their modes of subalgebras. 
The sets j o  introduced in the previous section again turn out to be important. 

It is convenient to use some notation introduced in [12, 2.4]. Let ~3 be a variety 
of modes. Then the free ~3-algebra {0, 1} V on two generators is a semigroup under 
the multiplication, given by xy (#  �9 v) = x xy#v.  Also {0, 1 } V has a unary operation 

given by x y # '  = y x # .  For r, s in a ring R, one has r . s  = rs and r ' - - - 1 -  r. 
Transferring notation between rings R and free algebras {0, 1} V, the operation #n 
is defined by x y #  n = x .  �9 x y #  �9 �9 �9 # and the ring element r' is defined as 1 - r. 

The following lemma, a direct corollary of Theorem 3.9, will be used frequently 
in discussion of our examples. Let ~3 be a variety of Q-algebras equivalent to a 
variety __R of affine R-spaces. For each 23-algebra (A, Q), let ~3(A) be the smallest 
subvariety of ~3 containing (A, Q). Then there is quotient R(A)  of the ring R such 
that the varieties 2~(A) and R(A)  are equivalent. The algebra (A, Q) is equivalent to 
the faithful affine space (A, R(A) ,  P). 

LEMMA 4.1. Let  fB be a variety o f  Q-algebras equivalent to a variety R= o f  affine 

R-spaces.  Le t  (A, Q) be in ~ .  I f  Q o c JR(A) U {P}, then the algebra ((A, (2)S, Q) is a 

Ptonka sum o f  fB(A)-algebras, equivalent to affine R(A)-spaces,  over the semilattice 

((A, +, R)S, +) = ((A, +, R(A))S, +). [] 

Examples 

A. Quasigroup modes 

Recall that a quasigroup is an algebra (A, #, p, 2) of type {#, p, 2} x {2} satisfy- 
ing the identities x y # y p  = x = x y p y #  and x x y # 2  = y = xxy2# .  A groupoid (A, #) is 
said to be a quasigroup if, for each pair (a, b) of elements of A, the equations 
ax# = b and yap  = b have unique solutions x and y (written as x = ab2 and y = bap 

respectively). The variety ~3 of quasigroup modes is a Mal'cev variety with the 
Mal'cev operation defined by x y z P  = xypyz2# .  So there is a ring R such that 2~ is 
equivalent to the variety =R of affine R-spaces. The ring R is the localization of the 
ring Z[X] at the multiplicative subset { X k ( 1 - X ) l I k ,  l ~ N} of Z[X] (cf. [2]). A 
quasigroup (A, #,p,  2) in ~ is equivalent to the faithful affine R(A)-space 
(A, R(A) ,  P). So there are m, r, l in R(A)  with # = m__, p = _r and )+ = l_ For each 
element x of A, one has x = 00xm__! = xml.  The faithfulness of A then yields ml = 1, 

i.e. m and l are invertible. Similarly x = xOmOr = xm ' r '  yields m ' r ' =  1, i.e. m' and 
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o _ m,-1, r '  are invertible. Thus  m is element of  JR(A) with r = _ and l = m 1. By L e m m a  
o r" m ' -1 '  3.1, I = m 1, r '  = m '  1 and m '  are in JR(A), and hence r = = is in JR(A),O as 

well. As a consequence of  L e m m a  4.1, one has: 

P R O P O S I T I O N  4.2. For each quasigroup mode ( A , p , p ,  2), the algebra 

(AS,  I~, P, 2) is a Ptonka sum o f  quasigroups in ~B(A). [] 

B. M O Q - m o d e s  (pairs o f  mutually orthogonal quasigroup modes) 

A M O Q - m o d e  is a m o d e  (A, #, p, 2, #o, p0, 20, c~, fl) o f  the type {#, p, 2, #o, 

pO, 2o, ~, fl} x {2}, where the reducts (A, #, p, 2) and (A, #o, p0, 2o) are bo th  quasi- 

groups  and the opera t ions  ~ and fl satisfy the identities x y # x y # ~  = x  and 
xy#xy#~  = y  (cf. [3]). The latter identities mean  that  the quasigroups  (A, #) and 
(A, #o) are mutual ly  or thogonal ,  i.e. for  a and b in A, the equat ions a = xy#  and 

b = x y #  ~ have a unique solution in x and y. The  variety 9J~ of  M O Q - m o d e s  is 
obviously a Mal ' cev  variety. So there is a ring R such ta th  9)~ and =R are equivalent.  
Each M O Q - m o d e  A is equivalent  to the faithful affine R(A)-space (A, _R(A), P). By 

0 , - 1 ,  Example  A, there are m and n in JR(A) such that  # = ~ ,  p = m_ , 2  = nA -1, #o = _n, 
p O =  n , - l ,  2o = _n-1. N o w  the quasigroups  (A, #) and (A, #o) are mutua l ly  or thogo-  

nal iff the pair  o f  equat ions  

a = x y #  = xyt_n = x m '  + y m  

b = xy#~  = xyn_ = xn '  + yn 

has a unique solution. This happens  when the de terminant  

mn; m = m ' n - n ' m = n - m n + n m - m = n -  m 

is invertible in R(A).  In this case we have the solution 

= (n - -  m)  - - n '  m ' J L x y u ~  ' 

whence 

x = x y #  x y #  ~  - m )  - ~( - m )  

y = x y #  xy#~ -- m ) - l m ' .  
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Consequent ly  c~ = (n - m ) - l ( - m )  and fi = (n - m ) - l m  '. N o w  since 

n - - m + m  n 
[(n - m) --1( - -m)] '  = - 

n ~ m n m 

ALGEBRA UNIV. 

and 

([n - m) - lm ' ] '  - 
n - m - - m '  n - - m - l + m  

/ ' / - m  r / - - m  

EF/I 

/ ' / - - m  

it follows that  ~ and fl are in o -JR(re. Similarly as in Example  A we get the following: 

P R O P O S I T I O N  4.3. For each M O Q - m o d e  A, the algebra (AS,  #, p, 2,/~o, pO, 

)o, ~, fl) is a Ptonka sum o f  MOQ-modes  in ?OI(A). [] 

C. Mal '  cev varieties o f  groupoid modes 

I f  ~B is a Mal ' cev  variety of  g roupoid  modes,  then ~3 is equivalent  to a variety 

=R and the groupoid  mult ipl icat ion m a y  be identified with r for  some r in R. No te  
that  in this case the ring R is generated by r. Fo r  any ~ - g r o u p o i d  (A, r) there is a 
faithful affine space (A, R(A),  P) equivalent  to (A, _r). N o w  the Mal ' cev  opera t ion  P 

can be represented as 

x y z P  = ~ ai ( 1 - r)'~r "~x 
i 

+ ~  bj(1 -r)m,r" ,y  
J 

+ ~ Ck( 1 -- r)mkrnkz 
k 

(cf. e.g. [17]). Wi thout  loss of  generality we may  assume that  ni ~ 0 .  Then in 

part icular  

x = x y y P  = x - y + y = ~ ai ( 1 - r)mir nix 
i 

= o ~ ( r ) r x .  
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The faithfulness of (A, R(A), P) then yields cn(r)r = 1, implying that r is a unit of 
0 R(A). Similarly, one shows that 1 - r is a unit, as well. Hence r e JR(A). As before, 

Lemma 4.1 implies the following: 

PROPOSITION 4.4. Let fB be a Mal'cev variety of  groupoid modes. Then 
for each fB-groupoid (A, r), the algebra (AS, r) is a Ptonka sum of fB(A)- 
groupoids. [] 

Note that the groupoids (A,r_) are in fact equivalent to quasigroups 
(A, _r, r ' -v ,  s It follows that varieties ~3 of Mal'cev groupoid modes are equiva- 
lent to varieties of quasigroups. As an example of such a variety consider the 
variety ~ , k ,  for n, k > 2, of groupoid modes defined by the identities 

( ' ' "  ( ( X y l ) Y 2 )  " " ")Yk = X = Y k + l ( "  " " ( Y k  +n l ( Y k  + n X ) )  "" "), (4.5) 

where y~ . . . . .  Yk . . . . .  Yk+, = Y. The variety 2~,,~ is a Mal'cev variety with the 
Mal'cev operation defined by 

xyzP = ( " "  ( ( X y l ) Y 2 )  " " " ) Y k - - 1 "  Y k ( "  " " ( Y k  + n -  2Z) "" ") (4.6) 

for Yl . . . . .  Y~+,-2 =Y. So ~,,k is equivalent to some __R~,k, and we can identify 
the groupoid multiplication with r for a generator r of the ring Rn,k. Then (4.5) and 
(4.6) may be written as 

yxr 'k = x = yxr n, (4.5') 

xyzP = yxr '(k- 1)yzrn- lr. (4.6') 

The identities (4.5') imply that r n =  1 and ( 1 - r ) k =  1 in the ring Rn, k. Since 

in particular (Rn,k, r) is a member of ~3n.k, it follows that R,,k is the ring 
Z[X] / (X  n -  1, (1 - X )  k -  1). The varieties Nn,k contain as subvarieties many well- 
known varieties of  Mal'cev groupoid modes. Among them are the varieties (5(n, k) 
of  groupoids studied by Mitschke, Werner [6], equivalent to affine spaces over their 
rings R ( n , k ) = Z [ X ] / ( X n - I ,  X k + X - 1 ) .  Each (5(n,k) is a subvariety of 
~3n,n/(n,k ) . The varieties 15(q) of groupoids equivalent to affine spaces over finite fields 
GF(q), described by Ganter, Werner [4], are subvarieties of  G ( q -  1, k), where 
r + r k = 1 and r is a primitive element of  GF(q). Finally, any variety 2m + 1 of 
commutative groupoid modes (see [5], [11] and [12]) is equivalent to the variety 
_Z2m+l of affine spaces, and is contained in ~n,n for some n. The groupoid 
multiplication is given by r = n + 1. Here 1 - - r  = r. 
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D. Affine spaces over fields of  characteristic zero 

Let K be a field of characteristic zero. The field K contains the field Q of 
rationals as its prime subfield. The reduct (E, Q, P) of the aNne K-space (E, K, P) 
is a rational affine space. Given such an algebra (E, _Q, P), one may consider its 
reduct (E, ! ~ obtained by admitting only those operations k for which k lies in the 
open unit interval I ~ = {x ~ Q [ 0 < x < 1}. The subalgebras (X, _/0) of (E, _/0) are 
precisely the Q-convex subsets X of E. The smallest variety containing the class of 
all Q-convex sets is the variety of rational barycentric algebra [11]. The following 
proposition illustrates Corollary 3.11(i). Note that, as shown in [11], the algebraic 
structures (E, _K, P) and (E, Q, P) may be replaced by the structures (E, _K) and 
(E. @), respectively, and that l ~  j o .  

PROPOSITION 4.7 [11]. For an afJine K-space (E. _K), the algebra ((E, _K)S, _/0) 
ts a Plonka sum of Q-convex sets (El U, ! ~ over the semilattice 
((E, +, K)S, +). [] 

The I~ (E,_/~ of the anne  K-spaces (E,_K,P) are in fact 
equivalent to affine Q-spaces, and form a variety equivalent to the variety =Q. The 
following proposition illustrates Corollary 3.1 l(ii). 

PROPOSITION 4.8. For an afJine K-space (E, _K), the algebra ((E, _/o, P)S, /o, p) 
is a Ptonka sum of quotients of  (E, I_ ~ P) over the semilattice ((E, +, Q)S, +). 

[] 

E. Affine spaces over fields of odd characteristic 

If the characteristic of the field K is odd, then again the algebraic structure (E, _K, P) 
may be replaced by the structure (E, _K). The field K contains the inverse 1/2 of 
2 = 1 + 1, and in reducts (E, 1_~), the operation 1~2 generates all the operations _r 
for r in the open unit interval D ~  in the set D =  
{m2 -~ ] m, n c Y} of dyadic rationals. The operations 1 ~  and P generate all the 
operation r for r in D. The reducts (E, l_j2_, P) are equivalent to (E, D ~ P) and to 
(E, _D, P). The reducts (E, ~ are quasigroups and lie in irregular varieties 2m + 1 
of commutative groupoid modes. Similarly as in Example D, the following proposi- 
tion illustrates Corollary 3.11. 

PROPOSITION 4.9 [11]. For an affine space (E, _K) over afield of odd character- 
istic, there is an irregular variety 2m + 1 of commutative groupoid modes such that 
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the algebra (ES, 1/2) is a Ptonka sum o f  2m + 1-groupoids over the semilattice 

((E, +,  K)S, +). [] 

P R O P O S I T I O N  4.10. For an affine space (E, K_ ) over a field of  odd characteris- 

tic, the algebra ((E, 1/2, P)S, 1/2, P) is a Ptonka sum o f  quotients o f (E ,  1/2, P) over 

the semilattice ((E, +,  •)S, +). [] 

F. Affine spaces over fields o f  characteristic two 

Let K be a field of  characteristic two. The reducts (E, P) of  affine K-spaces 
(E, K, P) are in an arithmetical variety 931i, called the variety of  minority modes 

(A, P), defined by the entropic law for P and the identities 

y x y P  = x y y P  = y y x P  = x. 

The following illustrates Corollary 3.10. 

P R O P O S I T I O N  4.11 [ 11]. Let K be a field o f  characteristic 2. Then for an affine 
K-space (E, K_, P), the ternary mode ((E, K_, P)S, P) is a Ptonka sum o f  minority 

modes over the semilattice ((E, +,  K)S,  +). [] 
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