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Given an algebra (A, Ω) of type τ : Ω → N one may form the set (A,Ω)S or
AS of non-empty subalgebras of (A, Ω). This set AS may carry an Ω-algebra
structure under the ω-complex products

ω : ASωτ → AS; A1 . . . Aωτω = {a1 . . . aωτω | ai ∈ Ai},

for each ω in Ω. But in general, the family AS does not need to be closed under
complex operations. However if it is, the algebra (AS, Ω) is called the complex
algebra of subalgebras of the algebra (A,Ω), or briefly the algebra of subalgebras.

An important class of algebras for which the set AS is closed under complex
operations is given by modes - idempotent and entropic algebras. The two
properties of idempotency and entropicity of a mode (A, Ω) may be expressed
algebraically by means of identities:

x . . . xω = x,

x11 . . . x1nω . . . xm1 . . . xmnωω′ = x11 . . . xm1ω
′ . . . x1n . . . xmnω′ω,

that are satisfied in (A,Ω) for any n-ary operation ω and m-ary operation ω′ in
Ω. Such algebras are studied in detail in [7].

One of the more important examples of modes is given by affine spaces over
ring R. Let R be a commutative ring with unity and let (E, +, R) be a module
over R. For each element r of R, define a binary operation r by

r : E × E → E; (x, y) 7→ (1− r)x + ry,

and the Mal’cev operation P by

P : E × E × E → E; (x, y, z) 7→ x− y + z.

1



Then the algebra (E,R, P ) with the ternary operation P and the set R = {r |
r ∈ R} of binary operations has as its derived operations (those obtained from
successive compositions of the basic operations P and r for r in R) precisely the
affine combinations r1x1+r2x2+. . .+rnxn with r1+r2+. . .+rn = 1 of elements
x1, x2, . . . , xn of E. The set E together with all the idempotent term operations
(considered as fundamental) is called the full idempotent reduct of the R-module
(E, +, R) ([12]). It follows that the algebra (E,R, P ) is equivalent to the full

idempotent reduct (E, {r1x1 + r2x2 + . . .+ rnxn | r1, r2, . . . , rn ∈ R,
n∑

i=1

ri = 1})
of the module (E, +, R). Note that the algebra (E, R, P ) has the affine group as
its group of automorphisms, and may thus be identified with the affine geometry
([2]). Carrying out this identification, we will refer to the algebra (E, R, P ) as
an affine space over R or an affine R-space. (Note, however, that such algebras
have also been called affine modules). It is well known that the class of affine
spaces over a commutative ring R with unity forms a variety R.

The entropic law plays a special rôle in complex algebras of subalgebras. For
an entropic algebra (A,Ω), the set of non-empty subalgebras of (A,Ω) carries
an Ω-algebra structure under the complex products. In particular, if (A,Ω) is
an affine space over a commutative ring R with unity, then (AS,Ω) is again a
mode satisfying all the linear identities true in (A,Ω). In general the algebra
(AS, Ω) is not an affine space. In [5] modes of subspaces of affine spaces over
an arbitrary commutative ring with unity were investigated. It was shown
there that certain reducts of such modes are Ponka sums of affine spaces over
corresponding projective spaces. The present paper continues the study set out
in [5]. We generalise results of [5] to describe algebras of subalgebras of certain
reducts of modules over an arbitrary commutative ring with unity having affine
spaces as their reducts.

Such reducts of modules are defined in Section 1. The basic operations are
linear combinations r1x1 + . . . + rnxn with r1 + . . . + rn − 1 in a fixed subset
TR of R containing 0. (This generalises an idea of S. Givant [1].) Since such
algebras have as reducts affine R-spaces, we call them TR-enrichments of affine
R-spaces. We show that they are entropic and Mal’cev algebras. However they
are not idempotent. {0}-enrichments are precisely affine R-spaces. In this case
the subalgebras of an affine space (E, R, P ) are exactly the cosets of submodules
of the module (E, +, R). We obtain a similar characterisation of subalgebras
of TR-enrichments of affine R-spaces in Proposition 1.4. This result allows us
to describe algebras of subalgebras of TR-enrichments of affine R-spaces using
the concept of Ponka sum. In Section 2 we show that certain reducts of such
algebras may be constructed as Ponka sums of reducts of TR-enrichments of
affine R-spaces over corresponding projective spaces. In Section 3 we use the
construction of a generalized coherent Lallement sum ([11]) to describe a wider
class of reducts of algebras of subalgebras of TR-enrichments of affine R-spaces.

The notation and terminology of the paper is basically as in the book [7].
We refer the reader to the book for all undefined notions and results. We use
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”Polish” notation for words (terms) and operations, e.g. instead of w(x1, . . . , xn)
we write x1 . . . xnw. Moreover, the symbol x1 . . . xnw means that x1, . . . , xn

are exactly the variables appearing in the word w. Algebras and varieties are
equivalent if they have the same derived operations.

1. Enrichments of affine spaces

Let R be a commutative ring with unity and let (E, +, R) be a module over
R. Moreover let TR be a subset of R which includes 0.
For r1, . . . , rn in R, we define an n-ary operation:

(r1, r2, . . . , rn) : En → E;

(x1, x2, . . . , xn) 7→ x1x2 . . . xn(r1, r2, . . . , rn) := r1x1+r2x2+. . .+rnxn =
n∑

i=1

rixi.

Let <(TR) denote the set {(r1, r2, . . . , rn) | r1, r2, . . . , rn ∈ R,
n∑

i=1

ri − 1 ∈ TR}.
Then (E,<(TR)) is an algebra, a reduct of the module (E, +, R). We will refer
to the algebra (E,<(TR)) as the TR-enrichment of the affine R-space.

Example 1.1. For each r in R, 1− r + r− 1 = 0 is in TR, hence (1− r, r) and
(1,−r, r) are in <(TR), where

(1− r, r) : E × E → E; (x1, x2) 7→ x1x2(1− r, r) = (1− r)x1 + rx2 = x1x2r,

(1,−r, r) : E × E × E → E; (x1, x2, x3) 7→ x1x2x3(1,−r, r) = x1 − rx2 + rx3.

In particular
x1x2x3(1,−1, 1) = x1 − x2 + x3 = x1x2x3P

is the Mal’cev operation. It follows that the basic operations of the affine space
(E, R, P ) are contained in <(TR). 2

Example 1.2. The full idempotent reduct

(E, {r1x1 + r2x2 + . . . + rnxn | r1, r2, . . . , rn ∈ R,

n∑

i=1

ri = 1})

of the module (E, +, R) is equivalent to the affine R-space (E, R, P ). It fol-
lows that for TR = {0}, the {0}-enrichment (E,<({0})) of the affine R-space
(E, R, P ) is equivalent to the affine space (E, R, P ). Obviously, for an arbitrary
TR, the set <(TR) contains the full idempotent reduct of (E, +, R). 2

Note that modules over commutative rings are entropic, hence any two op-
erations (r1, . . . , rn), (s1, . . . , sm), not necessarily in <(TR), are entropic. In
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particular (E,<(TR)) is an entropic and Mal’cev algebra.
Note however that for (r1, r2, . . . , rn) in <(TR)

xx . . . x(r1, r2, . . . , rn) = r1x+r2x+ . . .+rnx = (r1 +r2 + . . .+rn)x =
n∑

i=1

ri ·x.

Since
n∑

i=1

ri − 1 is in TR, and in general TR 6= {0},
n∑

i=1

ri · x is not necessarily

equal to x. This implies that (E,<(TR)) is not always an idempotent algebra.
We have the following lemma.

Lemma 1.3. Let (E, +, R) be a faithful module over R. A TR-enrichment
of the affine R-space (E, R, P ) is idempotent iff TR = {0}.

Proof. Suppose that a TR-enrichment of the affine R-space (E,R, P ) is idem-
potent. This means that for each (r1, r2, . . . , rn) in <(TR)

xx . . . x(r1, r2, . . . , rn) = r1x + r2x + . . . + rnx =
n∑

i=1

ri · x = x.

The faithfulness of E yields
n∑

i=1

ri = 1 and
n∑

i=1

ri− 1 = 0 for each (r1, r2, . . . , rn)

in <(TR). Thus TR = {0}. Obviously the affine R-space (E, R, P ) is an idem-
potent algebra. 2

Proposition 1.4. Let U be a submodule of the module (E, +, R) and let
a be in E. If TRa = {ra | r ∈ TR} ⊆ U , then the coset

a + U = {a + u | u ∈ U}

is a subalgebra of (E,<(TR)). For each subalgebra (A,<(TR)) of (E,<(TR))
there is an element a in E and a uniquely defined submodule U of (E, +, R)
such that A = a + U and TRa ⊆ U .

Proof. Let U be a submodule of (E, +, R), let a be in E and TRa ⊆ U . For
x1 = a+u1, x2 = a+u2, . . . , xn = a+un in a+U , with u1, u2, . . . , un in U and
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for an n-ary operation (r1, r2, . . . , rn) in <(TR)

x1x2 . . . xn(r1, r2, . . . , rn) = (a + u1)(a + u2) . . . (a + un)(r1, r2, . . . , rn)

= r1(a + u1) + r2(a + u2) + . . . + rn(a + un)

= r1a + r2a + . . . + rna + r1u1 + r2u2 + . . . + rnun

= (r1 + r2 + . . . + rn)a + r1u1 + r2u2 + . . . + rnun

= a + (
n∑

i=1

ri)a− a +
n∑

i=1

riui =

= a + (
n∑

i=1

ri − 1)a +
n∑

i=1

riui.

By assumption,
n∑

i=1

ri − 1 is in TR and TRa ⊆ U . Hence (
n∑

i=1

ri − 1)a is in U

and x1x2 . . . xn(r1, r2, . . . , rn) is in a + U . Consequently a + U is a subalgebra
of (E,<(TR)).

Let (A,<(TR)) be a subalgebra of (E,<(TR)) containing 0. We observe that
for each r in R and a, b in A

a0(r, 1− r) = ra + (1− r)0 = ra,

and
a0b(1,−1, 1) = a− 0 + b = a + b

are in A. So A is a submodule of (E, +, R).
Now let (A,<(TR)) be an arbitrary subalgebra of (E,<(TR)) and let a be in

A. For any x in A we have x = a + x− a. Then

A = {a + (x− a) | x ∈ A} = a + {x− a | x ∈ A}.

Note that 0 = a−a and hence 0 is in {x−a | x ∈ A}. Now for an n-ary operation
(r1, r2, . . . , rn) in <(TR) and x1 − a, x2 − a, . . . , xn − a in {x − a | x ∈ A} we
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have:
(x1 − a)(x2 − a) . . . (xn − a)(r1, r2, . . . , rn)

= r1(x1 − a) + r2(x2 − a) + . . . + rn(xn − a)

= r1x1 + r2x2 + . . . + rnxn − (
n∑

i=1

ri)a

= r1x1 + r2x2 + . . . + rnxn − (
n∑

i=1

ri)a + a− a

= x1x2 . . . xnaa(r1, r2, . . . , rn,−
n∑

i=1

ri, 1)− a.

Of course, (r1, r2, . . . , rn,−
n∑

i=1

ri, 1) is in <(TR), and

x1x2 . . . xnaa(r1, r2, . . . , rn,−
n∑

i=1

ri, 1)

is in A. This implies that (x1−a)(x2−a) . . . (xn−a)(r1, r2, . . . , rn) is in {x−a |
x ∈ A} and that {x− a | x ∈ A} is a subalgebra of (E,<(TR)) containing 0. It
follows that {x − a | x ∈ A} is a submodule of (E, +, R), and A is a coset as
required.

Now let b be an element in A. Let us consider the following set

V = {x− b | x ∈ A}.
As was shown before, V is a submodule of (E, +, R). Let y be in V . Then there
is x in A such that y = x−b = x−b+a−a. Because (A,<(TR)) is a subalgebra
of (E,<(TR)) then z = x − b + a = xba(1,−1, 1) is in A. This implies that
y = z− a is in {x− a | x ∈ A} and V ⊆ {x− a | x ∈ A}. Similarly we can show
that {x− a | x ∈ A} ⊆ V , and consequently {x− b | x ∈ A} = {x− a | x ∈ A}
for any a and b in A. This shows that the submodule U of (E, +, R) such that
A = a + U , is defined uniquely.

Finally note that for each t in TR, the operation (t, 1) is in <(TR). Then
for each a in A, aa(t, 1) = ta + a is in A. Let u = ta + a. Then, ta = u − a
for u in A. It follows that TRa ⊆ {u−a | u ∈ A} and this completes the proof. 2

By Proposition 1.4. the cosets a + U of submodules U of (E, +, R) with
TRa ⊆ U , are exactly the subalgebras of the algebra (E,<(TR)). It is clear that
for TR = {0} subalgebras of affine R-spaces are exactly the cosets of submodules
of the module (E, +, R).

Note that if TRa is not included in U , the coset a+U of the submodule U of
(E, +, R) does not necessarily have to be a subalgebra of (E,<(TR)). Consider
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the following example.

Example 1.5. Consider the Z-module (Z, +, Z) and let TR: = Z. Let U be the
submodule (2Z, +, Z) of (Z, +, Z) and a = 1. Of course Z · 1 is not included in
2Z. Consider the coset

a + U = 1 + 2Z = {1 + 2z | z ∈ Z}

of the submodule (2Z, +, Z). Note that the operation (2, 2) is in <(Z) and
for any x = 1 + 2z1 and y = 1 + 2z2 in the coset 1 + 2Z, the element
xy(2, 2) = 4z1 + 4z2 + 4 is not in the set {1 + 2z | z ∈ Z}. Thus the coset
1 + 2Z is not a subalgebra of (Z,<(Z)). 2

2. Algebras of subalgebras of TR-enrichments of
affine R-spaces

Let (E, R, P ) be an affine space, TR ⊆ R and (E,<(TR)) be the TR -
enrichment of (E, R, P ). Consider the set ESA of non-empty subalgebras of
(E,<(TR)). The set ESA forms an algebra under the complex (r1, r2, . . . , rn)-
products

(r1, r2, . . . , rn): ESAn → ESA;

(A1, A2, . . . , An) 7→ {a1a2 . . . an(r1, r2, . . . , rn) | ai ∈ A}.
By results of [7] and [3] if an algebra (A, Ω) is entropic, then (AS, Ω) is again
entropic and satisfies each linear identity true in (A, Ω). It turns out that
the algebra (ESA,<(TR)) is an entropic algebra satisfying each linear identity
satisfied by (E,<(TR)).

To describe the structure of (ESA,<(TR)) we will need the notion of Ponka
sum of algebras ([6], [7]). Let us recall the definition. Let (Ω) denote the cate-
gory of Ω-algebras and homomorphisms between them. Consider the semilattice
(H, +) as a small category (H) with a set H of objects and with unique mor-
phism h → k precisely when h + k = k, i.e. h ≤ k.
Let F : (H) → (Ω) be a functor. Then the Ponka sum of the Ω-algebras
(hF, Ω), for h in H, over the semilattice (H,+) by the functor F , is the disjoint
union HF =

⋃
(hF | h ∈ H) of the underlying sets hF , equipped with the Ω-

algebra structure, given for each n-ary operation ω in Ω and h1, h2, . . . , hn, h =
h1 + h2 + . . . + hn in H, by

ω : h1F × . . .× hnF → hF ; (x1, . . . , xn) 7→ x1(h1 → h)F . . . xn(hn → h)Fω.

The canonical projection of the Ponka sum HF is the homomorphism π :
(HF, Ω) → (H, Ω) with restriction π : hF → {h}. The subalgebras (hF, Ω) =
(hπ−1,Ω) of (HF, Ω) are the Ponka fibres.
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Recall that for Ω-algebras in an idempotent irregular variety V, the identities
satisfied by their Ponka sums are precisely the regular identities satisfied in the
fibres. On the other hand, the regularisation Ṽ of V, the variety defined by all
the regular identities true in V, consists precisely of Ponka sums of V-algebras
(Cf. [6], [7]).

Let ESM be the set of submodules of the R-module (E, +, R). The internal
structure of certain reducts of (ESA,<(TR)) in the case R is an arbitrary com-
mutative ring with unity and TR = {0} was described in [5] using the concept
of Ponka sums. In that paper, one considered a certain subset ΩR of R. It
was shown that the algebra (ESA, ΩR) is a Ponka sum over the ΩR-semilattice
(ESM, ΩR) of submodules of the R-module (E, +, R) corresponding to the pro-
jective geometry. In particular, one obtained an invariant algebraic passage
from affine to projective geometry. The corresponding Ponka fibres were shown
to be quotient spaces of the affine R-space (E, R, P ).

In the more general case considered in this paper, the rôle of ΩR is taken by
the subset J0

R := {(r1, r2, . . . , rn) ∈ <(TR) | n ≥ 1 and for each 1 ≤ i ≤ n, ri

is a unit of R} of <(TR). The motivation for choosing the set J0
R is to obtain

an adequate description of the structure of (ESA,<(TR)). Moreover in the
case TR = {0} we want to have an invariant passage from affine to projective
geometry as in [10]. We will prove that for each commutative ring R with unity,
the algebra (ESA, J0

R) is a Ponka sum of cosets a + U with TRa ⊆ U , over
the J0

R-semilattice (ESM, J0
R). Projecive space is considered here as the set

ESM of submodules of the R-module (E, +, R), together with the semilattice
operation +, where for submodules U and V of (E, +, R),

U + V = {u + v | u ∈ U, v ∈ V }

is the sum of U and V . The inclusion structure is recovered from (ESM, +) via
U ≤ V iff U + V = V .

Let us recall that for a submodule U of (E, +, R) and r in R, rU is a sub-
module of U .

Lemma 2.1. Let U be a submodule of the module (E, +, R). Then U is a
subalgebra of (E,<(TR)).

Proof. For any submodule U of the module (E, +, R) we have U = 0 + U =
{0 + u | u ∈ U}. Moreover for an arbitrary subset TR of R, TR · 0 = {0} ⊆ U .
Hence by Proposition 1.4, U is a subalgebra of (E,<(TR)). 2

Corollary 2.2. The set ESM is a subalgebra of (ESA,<(TR)).

Proof. For (r1, r2, . . . , rn) in <(TR) and for submodules U1, U2, . . . , Un of (E, +, R)

U1U2 . . . Un(r1, r2, . . . , rn) = {u1u2 . . . un(r1, r2, . . . , rn) | ui ∈ Ui}
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= {r1u1 + r2u2 + . . . + rnun | ui ∈ Ui} = r1U1 + r2U2 + . . . + rnUn

is a submodule of the module U1 + U2 + . . . + Un. Hence ESM is a subalgebra
of (ESA,<(TR)). 2

Lemma 2.3. Let U1, U2, . . . , Un be submodules of the module (E, +, R) and
(r1, r2, . . . , rn) be in <(TR). Then one has:

(x1 + U1)(x2 + U2) . . . (xn + Un)(r1, r2, . . . , rn)

= x1x2 . . . xn(r1, r2, . . . , rn) + U1U2 . . . Un(r1, r2, . . . , rn).

Proof. For x1, x2, . . . , xn in E

(x1 + U1)(x2 + U2) . . . (xn + Un)(r1, r2, . . . , rn)

= {(x1 + u1)(x2 + u2) . . . (xn + un)(r1, r2, . . . , rn) | ui ∈ Ui}

= {r1x1 + r2x2 + . . . + rnxn + r1u1 + r2u2 + . . . + rnun | ui ∈ Ui}

= x1x2 . . . xn(r1, r2, . . . , rn) + {r1u1 + r2u2 + . . . + rnun | ui ∈ Ui}

= x1x2 . . . xn(r1, r2, . . . , rn) + U1U2 . . . Un(r1, r2, . . . , rn).

2

Lemma 2.4. Let U1, U2, . . . , Un be submodules of the module (E, +, R). Then
for each n-ary <(TR)-word w

(x1 + U1)(x2 + U2) . . . (xn + Un)w = x1x2 . . . xnw + U1U2 . . . Unw.

Proof. The proof goes by induction on the length of w. First note that by
Lemma 2.3 and for (r) in <(TR)

(x1 + U1)(r) = x1(r) + U1(r).

Hence the result holds for words of the length 1.
Now for x1, x2, . . . , xn in E and (r1, r2, . . . , rp) in <(TR), let

(x1 + U)(x2 + U) . . . (xn + U)w

= (x1 + U1) . . . (xk + Uk)((xk+1 + Uk+1) . . .

(xk+p + Uk+p)(r1, . . . , rp))(xk+p+1 + Uk+p+1) . . . (xn + Un)w.
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Then by the induction hypothesis, we have

(x1 + U)(x2 + U) . . . (xn + U)w

= (x1 + U1) . . . (xk + Uk)(xk+1 . . . xk+p(r1, . . . , rp)+

Uk+1 . . . Uk+p(r1, . . . , rp))(xk+p+1 + Uk+p+1) . . . (xn + Un)w

= x1 . . . xkxk+1 . . . xk+p(r1, . . . , rp)xk+p+1 . . . xnw+

U1 . . . UkUk+1 . . . Uk+p(r1, . . . , rp)Uk+p+1 . . . Unw

= x1x2 . . . xnw + U1U2 . . . Unw.

2

Note that for a submodule U of (E, +, R) and (r1, r2, . . . , rn) in <({0})
UU . . . U(r1, r2, . . . , rn) = r1U + r2U + . . . + rnU ⊆ U

=
n∑

i=1

ri · U = {
n∑

i=1

ri · u | u ∈ U}

= {r1u + r2u + . . . + rnu | u ∈ U} ⊆ r1U + r2U + . . . + rnU.

Hence UU . . . U(r1, r2, . . . , rn) = U . This gives the following corollary.

Corollary 2.5. Let U be a submodule of the module (E, +, R). Then for
each n-ary <({0})-word w

(x1 + U)(x2 + U) . . . (xn + U)w = x1x2 . . . xnw + U.

2

Lemma 2.6. For submodules U1, U2, . . . , Un of the module (E, +, R) and
(r1, r2, . . . , rn) in , J0

R, one has

U1U2 . . . Un(r1, r2, . . . , rn) = U1 + U2 + . . . + Un.

Proof. If r is a unit of R, then U = {r · r−1u | u ∈ U} ⊆ rU . Since obviously,
rU ⊆ U , it follows that U = rU .
Hence

U1U2 . . . Un(r1, r2, . . . , rn) = r1U1 + r2U2 + . . . + rnUn = U1 + U2 + . . . + Un.

2
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Note that the semilattice (ESM, +) of submodules of (E, +, R) may be
considered as an <(TR)-semilattice on defining

U1U2 . . . Un(r1, r2, . . . , rn) := U1 + U2 + . . . + Un

for Ui in ESM . By the previous lemma, the J0
R-algebra (ESM, J0

R) is in fact
the J0

R- semilattice of submodules of (E, +, R).
Note that if (r1, r2, . . . , rn) is not in J0

R, the subset U1U2 . . . Un(r1, r2, . . . , rn)
is not necessarily equal to U1 + U2 + . . . + Un. First observe that rU may be
different from U . Indeed, in Z6, {0, 3} and {0, 2, 4} are submodules of Z6 and
4{0, 3} = {0} 6= {0, 3}. Similarly, 3{0, 2, 4} = {0} 6= {0, 2, 4}. Now in Z6SA,

{0, 3}{0, 2, 4}(4, 3) = 4{0, 3}+3{0, 2, 4} = {0}+{0} = {0} 6= Z6 = {0, 3}+{0, 2, 4}.
The operation (4, 3) is not in J0

Z6
. In fact, for each (Z2n,<(TZ2n)), the subset

{(r, 1−r) | r ∈ R} of J0
Z2n

is empty. Indeed, if for k, l in Z2n, kl = 1, then both k
and l are odd. But in this case, 1−k and 1−l are even, and hence non-invertible.

Lemma 2.7. For a submodule U of (E, +, R), the set {x+U | x ∈ E, TRx ⊆ U}
is a subalgebra of (ESA, J0

R).

Proof. First note that by Lemma 2.3 and Lemma 2.6, for (r1, r2, . . . , rn) in
J0

R and for (x1 + U), (x2 + U), . . . , (xn + U) in {x + U | x ∈ E, TRx ⊆ U} we
have

(x1 + U)(x2 + U) . . . (xn + U)(r1, r2, . . . , rn)

= x1x2 . . . xn(r1, r2, . . . , rn) + UU . . . U(r1, r2, . . . , rn)

= x1x2 . . . xn(r1, r2, . . . , rn) + r1U + r2U + . . . + rnU

= x1x2 . . . xn(r1, r2, . . . , rn) + U.

Moreover for each xi in E, 1 ≤ i ≤ n, and for each t in TR, there are some ui in
U such that txi = ui, and also ritxi = riui. It follows, that for each t in TR,

t(x1x2 . . . xn(r1, r2, . . . , rn)) = r1tx1 + r2tx2 + . . . + rntxn

= r1u1 + r2u2 + . . . + rnun = u1u2 . . . un(r1, r2, . . . , rn)

is in U . Then TR(x1x2 . . . xn(r1, r2, . . . , rn)) ⊆ U and {x+U | x ∈ E, TRx ⊆ U}
is a subalgebra of (ESA, J0

R). 2

Lemma 2.8. For each (r1, r2, . . . , rn) in <(TR), the mapping

π : ESA → ESM ; x + U 7→ U

is a homomorphism from the algebra (ESA, (r1, r2, . . . , rn)) into the (r1, r2, . . . , rn)-
algebra of submodules of the module (E, +, R).
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Proof. For submodules U1, U2, . . . , Un and (r1, r2, . . . , rn) in <(TR), we have

(x1 + U1)(x2 + U2) . . . (xn + Un)(r1, r2, . . . , rn)π

= (x1x2 . . . xn(r1, r2, . . . , rn) + U1U2 . . . Un(r1, r2, . . . , rn))π

= U1U2 . . . Un(r1, r2, . . . , rn)

= (x1 + U1)π(x2 + U2)π . . . (xn + Un)π(r1, r2, . . . , rn).

It follows that the mapping π is an (r1, r2, . . . , rn)-homomorphism. 2

Proposition 2.9. For each (r1, r2, . . . , rn) in J0
R and for the functor F :

(ESM) → ((r1, r2, . . . , rn)) with UF = Uπ−1 and (U → V )F : Uπ−1 →
V π−1; x + U 7→ x + V , the algebra (ESA, (r1, r2, . . . , rn)) is the Ponka sum of
(r1, r2, . . . , rn)-reducts of ({x+U | x ∈ E, TRx ⊆ U},<(TR)) over the projective
space (ESM, +) by the functor F .

Proof. By previous lemmas, the mapping π is an (r1, r2, . . . , rn)-homomorphism
onto the semilattice (ESM, +). The fibres

(Uπ−1, (r1, r2, . . . , rn)) = ({x + U | x ∈ E, TRx ⊆ U}, (r1, r2, . . . , rn))

are (r1, r2, . . . , rn)-reducts of the algebra ({x + U | x ∈ E, TRx ⊆ U},<(TR)).

Further, for (r1, r2, . . . , rn) in J0
R,

(x1 + U1)(x2 + U2) . . . (xn + Un)(r1, r2, . . . , rn)

= x1x2 . . . xn(r1, r2, . . . , rn) + U1 + U2 + . . . + Un

= (x1 + (U1 + U2 + . . . + Un))(x2 + (U1 + U2 + . . . + Un)) . . .

(xn + (U1 + U2 + . . . + Un))(r1, r2, . . . , rn)

= (x1 + U1)(U1 → U1 + U2 + . . . + Un)F

(x2 + U2)(U2 → U1 + U2 + . . . + Un)F . . .

(xn + Un)(Un → U1 + U2 + . . . + Un)F (r1, r2, . . . , rn).

Thus (ESA, (r1, r2, . . . , rn)) is a Ponka sum as claimed. 2

Theorem 2.10. For an algebra (E,<(TR)), each algebra (ESA,Ω) of sub-
algebras of (E,<(TR)), where Ω ⊆ J0

R, is the Ponka sum of Ω-reducts of
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({x + U | x ∈ E, TRx ⊆ U},<(TR)) over the projective space (ESM, +) by
the functor F : (ESM) → (Ω) with UF = {x + U | x ∈ E, TRx ⊆ U} and
(U → V )F : UF → V F ; x + U 7→ x + V .

Proof. The fact that (ESA,Ω) is a Ponka sum over (ESM, +) by the func-
tor F follows directly by Proposition 2.9. 2

As noted in Example 1.2, the {0}-enrichment (E,<({0})) of an affine R-
space (E,R, P ) is equivalent to the affine R-space (E,R, P ).
Let J2

R := {r ∈ R | r and 1−r are units of R} and J2
R := {r | r ∈ J2

R}. Theorem
2.10 has the following corollary.

Corollary 2.11. [5] For an affine space (E, R, P ) in R, each algebra (ESA, Ω)
of affine subspaces of (E, R, P ), where Ω ⊆ J2

R, is a Ponka sum of Ω-reducts of
affine R-spaces ({x + U | x ∈ E}, R, P ) over the projective space (ESM, +) by
the functor F : (ESM) → (Ω) with UF = {x + U | x ∈ E} and (U → V )F :
UF → V F ; x + U 7→ x + V . 2

3. A sum of algebras over a mode.

In Section 2 the structure of the algebra (ESA, J0
R) was described using the

concept of a Ponka sum. In this Section, we use a more general construction
of generalized coherent Lallement sum to describe a wider class of reducts of
algebra (ESA,<(TR)).

At first we recall some results presented in [11] concerning generalized co-
herent Lallement sums.

Definition 3.1. [11] Let (I, Ω) be an algebra of type τ : Ω → N . The least
reflexive relation ≺ on I containing the set

{(i, j) | there exist x1 . . . xnt ∈ XΩ and i1, . . . , ik−1, ik+1, . . . , in ∈ I such that
j = i1 . . . ik−1iik+1 . . . int}

is called the algebraic quasi-order of the algebra (I, Ω). 2

Definition 3.2. [11] Let (I,Ω) be an algebra of type τ : Ω → N , let ≺ be
its algebraic quasi-order, and a1, . . . , aωτ , b1, . . . , bωτ its elements. An algebra
(I, Ω) satisfying the condition

(3.3) ∀ω ∈ Ω ∀i = 1, . . . , ωτ if ai ≺ bi then a1 . . . aωτω ≺ b1 . . . bωτω

is called naturally quasi-ordered. 2
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Let (B, Ω) be any algebra and S a subset of B. Then S is a sink of B if
for each (n-ary) ω in Ω and b1, . . . , bn in B, if for some i = 1, . . . , n, bi ∈ S
then b1, . . . , bnω ∈ S. A congruence θ on (B, Ω) preserves the sink (S, Ω) if the
restriction of the natural projection B → Bθ, b 7→ bθ to the subalgebra (S, Ω)
injects. The algebra (B, Ω) is said to be an envelope of a subalgebra (S, Ω), if
(S, Ω) is a sink of (B, Ω) such that equality is the only congruence on (B, Ω)
preserving (S, Ω). (See [7].)

Definition 3.4. [11] Let (I,Ω) be an idempotent Ω-algebra with the algebraic
quasi- ordering ≺. For each i in I, let an Ω-algebra (Ai, Ω) and its extension
(Ei, Ω) be given, i.e. (Ai, Ω) is a subalgebra of (Ei, Ω). For i ≺ j in (I,≺) , let
φi,j : (Ai, Ω) → (Ej , Ω) be an Ω-homomorphism such that:

a) φi,j is an embedding of Ai into Ei;

b) for each (n-ary) ω in Ω and for ii, . . . , in in I with i1 . . . inω = i,

(Ai1φi1,i) . . . (Ainφin,i)ω ⊆ Ai;

c) for each i1 . . . inω = i ≺ j in (I,≺)

ai1φi1,i . . . ainφin,iωφi,j = ai1φi1,j . . . ainφin,jω,

where for k = 1, . . . , n, aik
∈ Aik

;

d) for each j in I, the extension Ej of Aj is its envelope and Ej = {aiφi,j | i ≺ j}.

Then the disjoint union A =
⋃

(Ai | i ∈ I) equipped with the operations

ω : Ai1 × . . .×Ain → Ai; (ai1 , . . . , ain) 7→ ai1φi1,i . . . ainφin,iω

for all ω in Ω, all (i1, . . . , in) ∈ In and i = i1 . . . inω, is called a generalized
coherent Lallement sum or briefly gcL-sum.

A gcL-sum is said to be strict if Ej = Aj for each j in I. 2

Using the construction of gcL-sum one can represent each algebra having a
homomorphism onto an idempotent naturally quasi-ordered algebra.

Theorem 3.5. [11] Let (A, Ω) be an Ω-algebra having a homomorphism onto
an idempotent naturally quasi-ordered algebra (I, Ω), with corresponding fibres
(Ai,Ω) for i in I. Then (A,Ω) is a gcL-sum of (Ai, Ω). 2

Let

J−1
R := { (r1, r2, . . . , rn) ∈ <(TR) | n ≥ 1 and there exists at least one

1 ≤ i ≤ n such that ri is a unit of R}
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and

J∞R := { (r1, r2, . . . , rn) ∈ J−1
R | n ≥ 1 and there exists at least one

1 ≤ i ≤ n such that ri = 0}.

Now we will show that certain reducts of (EMS,<(TR)) are idempotent
naturally quasi-ordered algebras.

Lemma 3.6. For each Ω ⊆ <(TR) such that Ω∩J∞R 6= ∅, the algebra (ESM, Ω)
is naturally quasi-ordered.

Proof. By Corollary 2.2, the set ESM is a subalgebra of (ESA, Ω). By Defini-
tion 3.1, the quasi-order ≺ of the algebra (ESM, Ω) is the set

S = { (U, V ) | ∃x1 . . . xnt ∈ XΩ, U1, . . . , Uk−1, Uk+1, . . . , Un ∈ ESM
V = U1 . . . Uk−1UUk+1 . . . Unt}.

Note that for submodules U and V in ESM and (r1, . . . , ri, . . . , 0, . . . , rn) in
the set Ω ∩ J∞R , we have

V . . . V . . . U . . . V (r1, . . . , ri, . . . , 0, . . . , rn)

= r1V + . . . + riV + . . . + 0U + . . . + rnV =

= r1V + . . . + V + . . . + {0}+ . . . + rnV = V.

Hence, for all submodules U and V in ESM , (U, V ) ∈ S and the algebraic
quasi-order ≺ of (ESM,Ω) is full. Consequently, the set ESM is naturally
quasi-ordered. 2

Corollary 3.7. The algebra (ESM,<(TR)) of submodules of the R-module
(E, +, R) is naturally quasi-ordered. 2

Lemma 3.8. For each Ω ⊆ J−1
R , the algebra (ESM,Ω) is a mode.

Proof. By Corollary 2.2, the set ESM is a subalgebra of (ESA, Ω), so it is
an entropic algebra. Moreover, let us recall that for each r in R and U in ESM
we have

U + U = U,

rU = {ru | u ∈ U},

U + rU = U.

If r is a unit of R, then rU = U . Hence for each n-ary operation (r1, . . . , rn) in
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Ω ⊆ J−1
R one has

U . . . U . . . U(r1, . . . , ri, . . . , rn)

= r1U + . . . + riU + . . . + rnU = r1U + . . . + U + . . . + rnU = U.

This implies that (ESM, Ω) is an idempotent algebra. Hence, the algebra
(ESM, Ω) is a mode. 2

Finally, we can use the construction of gcL-sum to describe certain reducts
of algebras of subalgebras of (E,<(TR)). We have the following theorem.

Theorem 3.9. For an algebra (E,<(TR)), the algebra (ESA, Ω) of subal-
gebras of (E,<(TR)), where Ω ⊆ J∞R , is the gcL-sum of Ω-reducts of ({x + U |
x ∈ E, TRx ⊆ U},<(TR)) over an Ω-mode (ESM, Ω).

Proof. As was shown in Proposition 1.4. non-empty subalgebras of (E,<(TR))
are cosets a+U of submodules of the module (E, +, R) such that TRa ⊆ U . By
Lemma 2.8, for each (r1, . . . , rn) in <(TR), the mapping

π : ESA → ESM ; x + U 7→ U

is a homomorphism from the algebra (ESA, (r1, . . . , rn)) to the (r1, . . . , rn)-
algebra of submodules of the module (E, +, R). Then, by Lemmas 3.6 and 3.8,
the algebra (ESA,Ω) has a homomorphism onto an idempotent naturally quasi-
ordered algebra (ESM,Ω) with the corresponding fibers (MU , Ω) := ({x + U |
x ∈ E, TRx ⊆ U}, Ω), for U in ESM . Hence, by Theorem 3.5, (ESA, Ω)
is a gcL-sum of (MU , Ω) over (ESM, Ω). Moreover, for each pair (U, V ) ∈
ESM × ESM the mappings

φU,V : MU → MV ; x + U 7→ x + V

are Ω-homomorphisms. Indeed, by Lemmas 2.3 and 3.8, for each (r1, . . . , rn) in
Ω we have

(x1 + U) . . . (xn + U)(r1, . . . , rn)φU,V

= (x1 . . . xn(r1, . . . , rn) + U . . . U(r1, . . . , rn))φU,V

= (x1 . . . xn(r1, . . . , rn) + U)φU,V = x1 . . . xn(r1, . . . , rn) + V

= x1 . . . xn(r1, . . . , rn) + V . . . V (r1, . . . , rn)

= (x1 + V ) . . . (xn + V )(r1, . . . , rn)

= (x1 + U)φU,V . . . (xn + U)φU,V (r1, . . . , rn).
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So the extension EV of MV is equal to

{(x + U)φU,V | U ∈ ESM, x ∈ E, TRx ⊆ U} = {x + V | x ∈ E}.

2

As a consequence of Theorem 3.9. one has the following.

Corollary 3.10. For an affine space (E,R, P ) in R, each algebra (ESA, Ω)
of affine subspaces of (E, R, P ), where Ω ⊆ {r | r or 1 − r are units of R}
and Ω ∩ {0, 1} 6= ∅, is the strict gcL-sum of Ω-reducts of affine R-spaces
({x + U | x ∈ E}, R, P ) over an Ω-mode (ESM,Ω).

Proof. As noted in Example 1.2, the {0}-enrichment (E,R({0})) of an affine
R-space (E,R, P ) is equivalent to the affine R-space (E,R, P ). In particular,
subalgebras of {0}-enrichments of affine R-spaces are exactly the cosets of sub-
modules of the module (E, +, R). By Theorem 3.9, each algebra (ESA, Ω),
where Ω ⊆ {r | r or 1− r are units of R} and Ω ∩ {0, 1} 6= ∅, is the gcL-sum of
Ω-reducts (MU ,Ω) := ({x + U | x ∈ E}, Ω) of affine R-spaces, over an Ω-mode
(ESM, Ω), with for submodules U , V in ESM , Ω-homomorphisms

φU,V : MU → MV ; x + U 7→ x + V.

Moreover, the extension EV of MV is equal to

{(x + U)φU,V | U ∈ ESM, x ∈ E} = {x + V | x ∈ E} = MV .

So in fact this gcL-sum is strict. 2
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