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The complex (power or global) algebra (AUS, Ω) of sets of an algebra (A, Ω)
of type τ : Ω → N is the family of non-void subsets of A with operations
of complex ω-products given by

ω : AUSωτ → AUS; X1 . . . Xωτω = {x1 . . . xωτω | xi ∈ Xi} ,

for each operation ω : Aωτ → A in the set Ω (in the notation of [10]).
According to [1] the concept of complex algebras of subsets originated

with Frobenius in the context of group theory. Any subset of a group is
refereed to as a “complex” and the complex products yield a “calculus of
complexes”. There are numerous examples of complex operations. In group
theory, for instance, any coset xN is the complex product of a singleton
{x} and a normal subgroup N . In lattice theory, the set I(L) of ideals
of any lattice (L,∧,∨) again forms a lattice under the set inclusion. If
(L,∧,∨) is distributive, then joins and meets in I(L) are precisely the
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complex operations obtained from joins and meets in (L,∧,∨) (see [1]).
For distributive lattice (L,∧,∨) its lattice of ideals is a subalgebra of the
complex algebra of (L,∧,∨).

Complex algebras of subalgebras are closely related to complex algebras
of sets. Given an algebra (A,Ω) of type τ : Ω → N , one may form the set
(A, Ω)S or AS of non-empty subalgebras of (A, Ω). This set AS may carry
an Ω-algebra structure under the ω-complex products

(CP) ω : ASωτ → AS; A1 . . . Aωτω = {a1 . . . aωτω | ai ∈ Ai} ,

for each ω in Ω. But in general, the family AS does not need to be closed
under complex operations. However if it is, AS is a subalgebra of the algebra
(AUS,Ω). In this case, the algebra (AS,Ω) is called the complex algebra of
subalgebras of the algebra (A, Ω), or briefly the algebra of subalgebras.

In general, a class of algebras need not to be closed under power algebras.
The complex algebra of a group, for example, is not again a group [3]. This
is due to the fact that although a complex operation may preserve some of
the properties of (A, Ω) it will in general not retain them all. In particular,
not all identities true in (A, Ω) will be satisfied in (AUS,Ω) or in (AS,Ω).

In this paper we study identities satisfied in complex algebras of sub-
algebras of a given algebra. Recall that a term p is linear if no variable
symbol occurs more than once in p. An identity p = q is linear if both
terms p and q are linear.

As was proved by G. Grätzer and H. Lakser, for any variety V of Ω-
algebras (A, Ω) and algebras (AUS,Ω) of non-empty subsets of A, the
identities satisfied by the variety generated by {(AUS,Ω)| (A, Ω) in V }
are precisely the consequences of linear identities true in V . The aim of
this paper is to find a similar characterisation for varieties generated by
algebras (AS,Ω) of non-empty subalgebras of (A,Ω). We are looking for an
answer to the following question. Is it true that identities satisfied by the
variety generated by {(AS, Ω)| (A, Ω) in V } are precisely the consequences
of linear and idempotent identities true in V ? We present many examples
which confirm our conjecture and we do not find a counterexample. However
the full answer to this question is still unknown.

In Section 1 we recall a characterization of complex algebras of sets given
by G. Grätzer and H. Lakser. Section 2 is devoted to complex algebras of
subalgebras. We give a sufficient condition, called complex condition, for
the set of non-empty subalgebras of an algebra to be closed under the com-
plex products. We present examples of algebras satisfying this condition.
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We show that the complex condition is not necessary to make the set AS of
non-empty subalgebras of an algebra (A, Ω) closed under complex products.
In Section 3 the role of the idempotent law in complex algebras of subalge-
bras is studied. An example of idempotent algebras is mode i.e. idempotent
and entropic algebra. As was shown by A. Romanowska and J.D.H. Smith
in [10], if (A, Ω) is a mode, then (AS,Ω) is again a mode satisfying each
linear identity satisfied by (A, Ω). Many examples of modes and their al-
gebras of submodes are demonstrated using this result. Moreover we show
that for a variety V the class {(AS,Ω)|(A,Ω) in V } is not necessarily a
variety. In the last, main Section 4 we present some (not necessarily lin-
ear) identities satisfied by the complex algebras of subalgebras in the case
varieties in question are idempotent. Some consequences of these results
are then applied to describe identities satisfied by algebras of subalgebras of
affine spaces. We show that many of the axioms defining affine spaces are
consequences of linear identities, and thus are satisfied by their algebras of
subalgebras.

The notation and terminology of the paper is similar to that in the
book [10]. We use “Polish notation” for words (terms) and operations, e.g.
instead of w(x1, ..., xn) we write x1...xnw. Moreover, the symbol x1...xnw
means that x1, ..., xn are exactly variables appearing in the word w. The
traditional notation is used in the case of groupoid words. For such words we
frequently use non-brackets notation. The cardinality of a set A is denoted
by |A|. We refer the reader to the book [10] for all undefined notions and
results.

1. Complex algebras of subsets

At first we recall some known results concerning complex algebras of sets.
It is convenient to use the following formalism. Let 1 ≤ m ≤ n and
let ϕ : {1, . . . , n} → {1, . . . , m}. Then from the term x1 . . . xnp, with
x1, . . . , xn distinct variables, we get the term x1ϕ . . . xnϕp with the vari-
ables x1, . . . , xm by substituting xiϕ for xi.

Lemma 1.1 (see [3]). Given two terms p and q with variables in the set
{x1, . . . , xm}, there are an integer n ≥ m, a mapping ϕ : {1, . . . , n} →
{1, . . . , m}, and linear terms p∗, q∗ with variables in the set {x1, . . . , xn}
such that p is obtained from p∗ and q is obtained from q∗ by substituting
xiϕ for xi.
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If x1 . . . xnp is a linear term, (A, Ω) an algebra and A1, . . . , An subsets of
A, then the definition of complex ω-product extends to

A1 . . . An p = {a1 . . . an p | ai ∈ Ai} .

As was shown in [3], the linearity of p is essential. For example, let (A, ·) be
a groupoid which is not a left or right zero band and let xp := xx. Then, for
a subset A1 of A, with more than one elements, the subset A1p is equal
to A1A1 = {ab | a, b ∈ A1} and not necessarily equal to {ap | a ∈ A1} =
{aa | a ∈ A1}. (See [3]).

For any variety V of Ω-algebras we denote by V US the variety gen-
erated by {(AUS, Ω) | (A,Ω) ∈ V }.

Proposition 1.2 (see [3]). Let V be a variety of algebras. Then the identi-
ties satisfied by V US are precisely those identities resulting through iden-
tification of variables from the linear identities true in V .

Corollary 1.3 (see [3]). Let V be a variety of algebras. Then V US = V
if and only if V is defined by a set of linear identities.

Let us call a term p∗ a generalization of a term p if p is obtained from p∗ by
identification of some variables. If p∗ is linear, we call it a linearisation of p.
This leads to the following. If for 1 ≤ m ≤ n, ϕ : {1, . . . , n} → {1, . . . , m}
is a mapping and x1 . . . xn p∗ is any linearisation of the term x1ϕ . . . xnϕ p,
then for subsets A1, . . . , Am of an Ω- algebra (A, Ω),

A1 . . . Am p = {a1 . . . an p∗ | ai ∈ Aiϕ} .

For instance, if (A, ·) is a groupoid, xyp = xxy, then for subsets A1 and
A2 of A

A1A2 p = {a11a12a2 | a11, a12 ∈ A1, a2 ∈ A2} .

Using the linearisation x1x2y p∗ = x1x2y of p, we see that

A1A2 p = {a11a12a2 p∗ | a11, a12 ∈ A1, a2 ∈ A2} = A1A1A2 p∗.

2. Complex algebras of subalgebras

If an algebra (A, Ω) is entropic, i.e. each operation, as a mapping from a
direct power of the algebra into the algebra, is actually a homomorphism,
then for each ω in Ω, the complex ω-product A1 . . . Aωτω is a subalgebra of
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(A,Ω). Consequently the set AS of non-empty subalgebras of (A,Ω) carries
an Ω-algebra structure under the complex products, and (AS,Ω) is a well
defined algebra (see [10]). But note that A1 . . . Aωτω is not a subalgebra of
(A,Ω) for an arbitrary algebra (A,Ω).

Example 2.1. Let (S3, ◦) be the permutation group of the set {1, 2, 3}. It
is easy to verify that

S3S = {{id} , {id, (23)} , {id, (13)} , {id, (12)} , {id, (123), (132)} ,

{id, (123), (132), (23), (13), (12)}} .

But {id, (23)} ◦ {id, (13)} = {id, (13), (23), (123)} is not a subalgebra of
(S3, ◦).
Let ω be in Ω and let (A1, Ω),. . . ,(Aωτ , Ω) be subalgebras of an algebra
(A,Ω). It is easy to see that A1 . . . Aωτ ω is a subalgebra of (A,Ω) if
and only if for each υ in Ω and elements aij in Ai with 1 ≤ i ≤ ωτ
and 1 ≤ j ≤ υτ , there are elements a1 in A1, ..., aωτ in Aωτ such that
a11 . . . aωτ1 ω . . . . . . a1υτ . . . aωτυτ ωυ = a1 . . . aωτ ω. This suggests the follow-
ing definition.

Definition 2.2. An algebra (A, Ω) satisfies the complex condition if for each
pair (ω, υ) in Ω × Ω, there exist terms t1, . . . , tωτ such that the following
identities hold in (A, Ω)

(CC)
x11 . . . xωτ1 ω . . . . . . x1υτ . . . xωτυτ ωυ

= y11 . . . y1 k1t1 . . . . . . yωτ1 . . . yωτkωτ tωτ ω,

with {yi1, . . . , yiki} a subset of {xi1, . . . , xi υτ} for each i = 1, . . . , ωτ .
A variety V of Ω-algebras (A, Ω) satisfies the complex condition if for

each pair (ω, υ) in Ω × Ω, there exist Ω-words t1, . . . , tωτ such that the
identities (CC) hold in each algebra (A,Ω) in the variety V .

Lemma 2.3. The complex condition (CC) is sufficient to make the set
AS of non-empty subalgebras of an algebra (A, Ω) closed under the complex
ω-products for all ω in Ω.

Proof. Let an algebra (A,Ω) satisfy the condition (CC). For an op-
eration ω in Ω, consider the complex ω-product A1 . . . Aωτ ω of ele-
ments A1, . . . , Aωτ of AS. Clearly A1 . . . Aωτ ω is non-empty. It is
a subalgebra of (A, Ω), since for each operation υ in Ω, there exist
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terms t1, . . . , tωτ such that for elements ai j of Ai with 1 ≤ i ≤
ωτ, 1 ≤ j ≤ υτ and corresponding subsets {bi1, . . . , biki

} of {ai1, . . . , ai υτ},
a11 . . . aωτ1 ω . . . . . . a1υτ . . . aωτυτ ωυ=b11 . . . b1 k1 t1 . . . . . . bωτ1 . . . bωτkωτ tωτ ω,
is in A1 . . . Aωτ ω.

Thus, if an algebra (A, Ω) satisfies (CC), then (AS,Ω) is a subalgebra of
(AUS,Ω).

Example 2.4. Let (G, ·) be a groupoid which satisfies the entropic identity

xy · x′y′ = xx′ · yy′.

Then, the complex condition is satisfied in (G, ·) with terms t1 = xx′ and
t2 = yy′.

Example 2.4 may be generalised as follows.

Example 2.5. According to [10] the property of entropicity of an algebra
(A, Ω) may be expressed algebraically by means of the linear identities

x11 . . . xωτ1 ω . . . . . . x1υτ . . . xωτυτ ωυ

= x11 . . . x1υτ υ . . . . . . xωτ1 . . . xωτυτ υω,

that are satisfied for all operations ω and υ in Ω. It is easy to see that
entropic law is a special case of the complex condition, where each term ti
is equal xi1 . . . xiυτυ.

Example 2.6. Let (G, ·) be a groupoid, which satisfies any one of the
following identities:

(i) xy · x′y′ = x · yy′;
(ii) xy · x′y′ = x′x′ · (yy · yy);
(iii) xy · x′y′ = xkx · yyp.

Then (G, ·) satisfies the condition (CC).

Example 2.7 (see [5] and [10]. Let (S, ·) be a semigroup which satisfies
any one of the following identities:

(i) xyx′y′ = xx′yy′;
(ii) xyx′y′ = xx′y;
(iii) xyx′y′ = xxxxy.
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Clearly (S, ·) satisfies the complex condition.

Example 2.8 (see [8]). Let (A, p) be an algebra with one n-ary operation
which satisfies the diagonal identity:

x11 . . . x1n p . . . . . . xn1 . . . xnn p p = x11 . . . xnn p.

Obviously, the algebra (A, p) satisfies the complex condition, where each
term ti is a variable.

Note, that also x11 . . . xn1 p . . . . . . x1n . . . xnn p p = x11 . . . xnn p.
So the algebra (A, p) satisfies the entropic law.

Example 2.9. There is a well known necessary and sufficient condition to
make the set of non-empty subgroups of a group closed under the complex
products. It was shown, e.g., in [15], that if (G1, ·,−1 ) and (G2, ·,−1 ) are
subgroups of a group (G, ·,−1 ), then G1G2 is a subgroup of (G, ·,−1 ) if
and only if G1G2 = G2G1 . In particular, abelian groups are closed under
the complex products. Obviously, every abelian group (G, ·,−1 ) satisfies the
condition (CC), because it satisfies the identities:

xy · x′y′ = xx′ · yy′,

(xy)−1 = x−1y−1.

But, by Example 2.1. this is not longer true for non-abelian groups.

Now we will show that the complex condition (CC) is not necessary to make
the set AS of non-empty subalgebras of an algebra (A,Ω) closed under the
complex products.

Example 2.10. Let (G, ·) be a four element non-idempotent groupoid,
with the following multiplication table:

· a b c d

a c c c d
b c c c d
c c c c c
d b a c d

It is easy to check that {c}, {d}, {c, d}, {a, c}, {b, c}, {a, b, c} and
{a, b, c, d} are all subgroupoids of (G, ·) and by the following table
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· {c} {d} {c, d} {a, c} {b, c} {a, b, c} {a, b, c, d}
{c} {c} {c} {c} {c} {c} {c} {c}
{d} {c} {d} {c, d} {b, c} {a, c} {a, b, c} {a, b, c, d}
{c, d} {c} {c, d} {c, d} {b, c} {a, c} {a, b, c} {a, b, c, d}
{a, c} {c} {c, d} {c, d} {c} {c} {c} {c, d}
{b, c} {c} {c, d} {c, d} {c} {c} {c} {c, d}
{a, b, c} {c} {c, d} {c, d} {c} {c} {c} {c, d}
{a, b, c, d} {c} {c, d} {c, d} {b, c} {a, c} {a, b, c} {a, b, c, d}

the set GS of subalgebras of (G, ·) is closed under the complex ·-product.
However this algebra does not satisfy the condition (CC). Suppose that

there exist terms t1 and t2 such that the following identity holds in (G, ·)

(2.11) x11x21 · x12x22 = y11y12 t1 · y21y22 t2,

with {yi1, yi2} a subset of {xi1, xi2} for each i=1,2.
A simple case analysis establishes that the free algebra on two genera-

tors x and y in the variety generated by the groupoid (G, ·) consists of 15
elements: x, y, xy, yx, xx, yy, x ·xy, x ·yx, y ·yx, y ·xy, yy ·x, xx ·y, xx ·xy, yy ·
yx, xy · xx.

Let xyt and xys denote terms different from x and y in the free
algebra on two generators x and y in the variety generated by the groupoid
(G, ·). It is easy to see that for x11 = a, x21 = d, x12 = b and x22 = d,

x11x21 · x12x22 = ad · bd 6= abt · d = c = x11x12t · x21,

x11x21 · x12x22 = ad · bd 6= abt · d = c = x11x12t · x22,

x11x21 · x12x22 = ad · bd 6= abt · dds = c = x11x12 t · x21x22 s.

Additionally, for x11 = x21 = x22 = d and x12 = c

x11x21 · x12x22 = dd · cd = c 6= d · dds = d = x11 · x21x22 s,

and for x11 = c and x21 = x12 = x22 = d

x11x21 · x12x22 = cd · dd = c 6= d · dds = d = x12 · x21x22s.
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Finally, substitutions as below give the following

x11x21 · x12x22 = dd · cd = c 6= dd = d = x11x21,

x11x21 · x12x22 = dd · cd = c 6= dd = d = x11x22,

x11x21 · x12x22 = cd · dd = c 6= dd = d = x12x21,

x11x21 · x12x22 = cd · dd = c 6= dd = d = x12x22.

So there exist no terms t1 and t2 such that the identity (2.11) holds in
(G, ·).

Example 2.12 (see [11]). Let (L, ·) be a left zero semigroup and let (L′, ·)
denote the semigroup obtained from (L, ·) by adjoining an identity element
1 such that 1 · 1 = 1 and for each l in L, 1 · l = l · 1 = l.

Now note that although (L, ·) itself is entropic, (L′, ·) is not if L has
at least two distinct elements l and m. Indeed, (1 · l) · (m · 1) = l 6= m =
(1 ·m) · (l · l).

Note moreover that subsemigroups of (L′, ·) are exactly the subsets
of L′. Hence the set of subsemigroups of (L′, ·) is closed under the complex
product. But, similar arguments as in example 2.10 show that the algebra
(L′, ·) does not satisfy the complex condition.

3. Idempotent law and modes of submodes

An algebra (A, Ω) is idempotent if each singleton is a subalgebra, i.e. the
identity x . . . x ω = x is satisfied in (A, Ω) for each operation ω in Ω.
The idempotent law plays a special role in complex algebras of subalge-
bras. It was shown in [10] that if (A,Ω) is idempotent and entropic,
then (AS,Ω) satisfies idempotent law, too. In fact, if (A, Ω) is idem-
potent and AS is a subalgebra of (AUS, Ω), then (AS,Ω) is idempotent,
too. Indeed, for a non-empty subalgebra (S, Ω) of (A, Ω) and ω in Ω,
S . . . Sω = {s1 . . . snω | si ∈ S} ⊆ S. Conversely, since (A, Ω) is idempo-
tent, S = {s | s ∈ S} = {s . . . sω | s ∈ S} ⊆ S . . . Sω, whence S . . . Sω = S
and we have the idempotence of (AS,Ω).

Let V be a variety of idempotent Ω-algebras (A, Ω) such that AS is
a subalgebra of (AUS,Ω). Let V S be the variety generated by the class
{(AS,Ω) | (A, Ω) ∈ V } . Since algebras of one-element subalgebras of alge-
bras in V satisfy exactly the identities true in V , it follows that V ⊆ V S ⊆
V US. The following example shows that the class {(AS,Ω) | (A,Ω) ∈ V }
is not necessarily a variety.
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Example 3.1. Let Lz be the variety of left zero bands, i.e. the vari-
ety of semigroups defined by the identity xy = x. We will show that the
class {(AS, ·) | (A, ·) ∈ Lz} is closed neither under subalgebras, nor under
products, nor under homomorphic images.

Let (A, ·) = ({a1, a2} , ·) and (B, ·) = ({b1, b2} , ·) be two element left
zero bands. Then AS = {{a1} , {a2} , {a1, a2}}, BS = {{b1} , {b2} , {b1, b2}}
and |AS ×BS| = 9.

Note that ({{a1} , {a2}} , ·) is a subalgebra of (AS, ·). However
({{a1} , {a2}} , ·) cannot be a complex algebra of subalgebras of some left
zero band (C, ·) because such an algebra must contain as its element the
whole algebra (C, ·) as well.

Note that for each left zero band (C, ·) with |C| = n, the set CS is
equal to the set of all non-empty subsets of C, and hence |CS| = 2n− 1. So
there is no algebra (C, ·) in Lz, such that |AS×BS| = |CS|. Consequently,
(AS × BS, ·) cannot be a complex algebra of subalgebras of some left zero
band. Finally, let us define a mapping

h : AS → BS; {a1} 7→ {b1}, {a2} 7→ {b2}, {a1, a2} 7→ {b1}.

It is easy to see, that h is an Lz-homomorphism and ASh = {{b1}, {b2}}.
But, as was observed above the algebra ({{b1} , {b2}} , ·) cannot be a com-
plex algebra of subalgebras of some left- zero band.

One of the more important examples of idempotent algebras satisfying com-
plex condition is given by modes (i.e. idempotent and entropic algebras).
The following property of complex algebras of modes was given in [10].

Proposition 3.2 (see [10]). If (A, Ω) is a mode, then (AS,Ω) is again a
mode satisfying each linear identity satisfied by (A, Ω).

Example 3.3. Semigroup modes are normal bands (see [5], [10]). Since the
variety of normal bands is specified by idempotent and linear identities, it
follows that for each normal band (A, ·), the algebra (AS, ·) also lies in this
variety. The same is true for any subvariety of this variety, in particular for
varieties of semilattices, left and right-zero bands, rectangular bands, and
left and right normal bands.

Example 3.4. Let (L, ·) be a differential or LIR-groupoid (see, e.g., [9],
[12]), i.e. a groupoid mode satisfying the following reduction law

x · yz = xy.
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By Proposition 3.2. the algebra (LS, ·) is a LIR-groupoid, too.

Example 3.5. A commutative groupoid mode (see [6], [13]) is a mode (C, ·)
satisfying the following commutative law

xy = yx.

Because the above identity is linear, the algebra (CS, ·) is also a commuta-
tive groupoid mode.

Let E be a vector space over a field F . Let F denote the set {r | r ∈ F} of
binary operations r on E given by r : E×E → E; (x, y) 7→ (1−r)x+ry.
The algebra (E,F ) is a mode ([10]).

Example 3.6. For a vector space E over the field IR of real numbers,
the subalgebras of (E, IR) are the affine subspaces of E and the algebra
(ES, IR) is the mode of affine subspaces of the space E (see [10]). A more
general case will be considered in Example 4.9.

Note that it is not always the case that non-empty subalgebras of (E,F ),
for an arbitrary field F , are affine subspaces of E. For example, if F =
GF (2), the Galois field of order 2, then the binary operations r are just the
projections, and every subset of E is a subalgebra of (E, F ).

Example 3.7. Let I0 be the open unit interval in the set IR of real
numbers (the interior of the closed unit interval [0,1]). One of the most
important varieties of modes is the variety of barycentric algebras (A, I0),
the smallest variety containing all convex subsets of real affine spaces. The
variety of barycentric algebras is defined by the
idempotence

xxp = x,

skew commutativity
xyp = yx(1− p),

and skew associativity

xypzq = x yz(q/(1− (1− p)(1− q))) (1− (1− p)(1− q)),

for all p and q in I0.
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The skew commutativity and skew associativity are linear identities, so if
(A, I0) is a barycentric algebra, then so is (AS, I0) (see [10], p. 215).

Finally, observe that the algebra (AS,Ω) may be a mode even if (A, Ω) is
not.

Example 3.8. Let (G, ·,−1 ) be an abelian group defined as an inverse
semigroup satisfying the following identities:

xy · z = x · yz,

xy = yx,

y−1yx = x = xyy−1,

xx−1 = yy−1.

By Example 2.9, the abelian group (G, ·,−1 ) satisfies the condition (CC).
By Lemma 2.3, the set GS is closed under complex multiplication and
inversion. Let (G1, ·,−1 ), (G2, ·,−1 ), (G3, ·,−1 ) and (G4, ·,−1 ) be arbitrary
subgroups of (G, ·,−1 ). It is easy to see that

G−1
1 =

{
g−1 | g ∈ G1

}
⊆ G1 = {g | g ∈ G1}

=
{
(g−1)−1 | g ∈ G1

}
⊆

{
h−1 | h ∈ G1

}
= G−1

1 ,

and

G1G1 = {gg̃ | g, g̃ ∈ G1} ⊆ G1

= {g | g ∈ G1} =
{
g (yy−1) | g, y ∈ G1

}
⊆ G1G1.

Hence we have
G−1

1 = G1,

and
G1G1 = G1.

Consequently, complex multiplication and inversion are idempotent opera-
tions. Moreover

(G1G2)−1 =
{
(g1g2)−1 | g1 ∈ G1, g2 ∈ G2

}

=
{
g−1
1 g−1

2 | g1 ∈ G1, g2 ∈ G2

}
= G−1

1 G−1
2
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and since commutativity and associativity are linear identities, it follows
that

G1G2G3G4 = G1G3G2G4.

Hence (GS, ·,−1 ) is an entropic algebra and consequently is a mode.

Let (A,Ω) be an Ω-algebra. Note, that for a non-empty subalgebra (S, Ω)
of (A,Ω) and for any ω in Ω

S . . . Sω = {s1 . . . snω | si ∈ S} ⊆ S.

The inverse inclusion S ⊆ S . . . Sω is satisfied if for each s in S and for each
ω in Ω there exist s1, . . . , sn in S such that s = s1 . . . snω. In particular
this is true for idempotent algebras.

Example 3.9. Let (G, f,1) be an algebra with one n-ary operation f and
one nullary operation 1, satisfying at least one of the following identities:

x1 . . .1f = x, 1x1 . . . 1f = x, . . . , 111 . . . 1xf = x.

Then for a subalgebra (S, f, 1) of (G, f, 1) and for each element s in S,
s = 1...s...1f is in S...Sf . It means that S ⊆ S...Sf and consequently
(GS, f) is an idempotent algebra.

Example 3.10. A groupoid (Q, ·) is said to be a quasigroup if, in the
equation xy = z, knowledge of any two of x, y, z specifies the third uniquely.
It means that for each a in Q the left multiplication La : Q → Q; b 7→ a ·b
and the right multiplication Ra : Q → Q; b 7→ b · a are bijections.

A quasigroup may also be defined as an algebra (Q, ·, /, \) with three
binary operations satisfying the following identities:

(xy)/y = x = (x/y)y,

x\(xy) = y = x(x\y).

Each non-empty subalgebra (S, ·, /, \) of (Q, ·, /, \) is a quasigroup and for
each s in s there exist a and b in s such that s = La(b) = a · b. Hence s
is in S ·S. It follows that the groupoid (QS, ·) is an idempotent algebra.
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4. Identities in complex algebras of subalgebras

Let us assume that each variety V considered in this section is a variety of
Ω-algebras (A, Ω) such that AS is a subalgebra of (AUS, Ω). For example
V may be a variety of Ω-algebras which satisfies the complex condition.

It is easy to see that if a variety V is defined by a set of linear identities,
then V S ⊆ V . As was noticed in Section 3, that for a variety V of
idempotent Ω-algebras we have V ⊆ V S. Hence by Proposition 3.2, for
the variety M of all modes of a given type, MS = M . The variety of
commutative binary modes, the variety of LIR-groupoids, all varieties of
normal semigroups also have this property.

The following examples show that there exist varieties V such that the
inclusion V S ⊆ V does not hold.

Example 4.1 (cf. 3.10). Let QM be the variety of quasigroup modes and
(Q, ·, /, \) be in QM . Then for each q in Q, Q and {q} are subalgebras
of (Q, ·, /, \). Because for each q in Q the right multiplication RqQ −→ Q;
a 7→ a · q is a bijection, the set {aq | a ∈ Q} is equal to Q. On the other
hand, for each q in Q, Q · {q} = {a q | a ∈ Q} = Q. Hence (QS, ·, /, \)
cannot be a quasigroup, since the left multiplication LQ : QS −→ QS;
P 7→ QP is not a bijection.

Example 4.2. Let S be the variety of symmetric groupoid modes (see
[14]), i.e. the variety of binary modes defined by the symmetric identity

(S) xy2 = x.

Note that for an S-groupoid (G, ·), the groupoid (GS, ·) does not nec-
essarily satisfy the symmetric identity (S). Indeed, consider the groupoid
(Z4, ·) = (Z4, 2) (see Example 3.5). In (Z4S, ·) we have ({0} · {0, 1, 2, 3}) ·
{0, 1, 2, 3} = {0, 2} · {0, 1, 2, 3} = {0, 2} 6= {0}.
As was shown by G. Grätzer and H. Lakser [3], linear identities true in V
are satisfied by V US. Since, the variety V S is a subvariety of V US,
linear identities true in V are also satisfied by V S.

Example 4.3. Let (L′, ·) be the algebra defined in Example 2.12. Because
each subset of L′ is a subalgebra of (L′, ·), then by Proposition 1.2 each
identity satisfied by (L′S, ·) is a consequence of a linear identity true in
(L′, ·).
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Let V be a variety of idempotent Ω-algebras. Now we will describe certain
non-linear identities satisfied by V S-algebras which are consequences of
non-linear identities true in V .

Let x11 . . . x1k1 . . . xl1 . . . xlkl
x(l+1)1 . . . x(l+1)kl+1

. . . xn1 . . . xnknp∗ and
x1 . . . xlxn+1 . . . xn+r q∗ be linear Ω-terms. Let for each 1 ≤ i ≤ l and
n+1 ≤ i ≤ n+ r, xi1 . . . xiki qi be an Ω-term. By substituting xi1 . . . xiki qi

for xi in the term q∗ we obtain the following Ω-term q:

x11 . . . x1k1 . . . xl1 . . . xlkl
x(n+1)1 . . . x(n+1)kn+1

. . . x(n+r)1 . . . x(n+r)kn+r
q :=

= x11 . . . x1k1q1 . . . xl1 . . . xlkl
qlx(n+1)1 . . . x(n+1)kn+1

qn+1...

. . . x(n+r)1 . . . x(n+r)kn+r
qn+r q∗.

Let us consider the following equation

(4.4) x11 . . . x1k1 . . . xl1 . . . xlkl
x(l+1)1 . . . x(l+1)kl+1

. . . xn1 . . . xnknp∗

= x11 . . . x1k1 . . . xl1 . . . xlkl
x(n+1)1 . . . x(n+1)kn+1

. . . x(n+r)1 . . . x(n+r)kn+r
q.

Note that if for at least one i with 1 ≤ i ≤ l, n + 1 ≤ i ≤ n + r, qi is a
non-linear term then (4.4.) is not linear, either.

Let p be the following Ω-term:

x1 . . . xlxl+1 . . . xnp := x1 . . . x1
k1−times

. . . xl . . . xl
kl−times

xl+1 . . . xl+1
kl+1−times

. . . xn . . . xn
kn−times

p∗.

By substituting xi for xi1, . . . , xiki
in (4.4.) and then by idempotency we

obtain the equation

(4.5)

x1 . . . xlxl+1 . . . xnp = x1 . . . x1
k1−times

. . . xl . . . xl
kl−times

xl+1 . . . xl+1
kl+1−times

. . . xn . . . xn
kn−times

p∗

= x1 . . . x1
k1−times

q1 . . . xl . . . xl
kl−times

qlxn+1 . . . xn+1
kn+1−times

qn+1 . . . xn+r . . . xn+r
kn+r−times

qn+rq
∗

= x1 . . . xlxn+1 . . . xn+rq
∗.

If there is at least one i with 1 ≤ i ≤ n and ki ≥ 2, then (4.5) is a
non-linear equation.
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Proposition 4.6. Let (A, Ω) be a V -algebra satisfying the identity (4.4.)
for some linear Ω-term x11 . . . x1k1 . . . xl1 . . . xlkl

x(l+1)1 . . . x(l+1)kl+1
. . .

. . . xn1 . . . xnknp∗, with ki ≥ 2 for 1 ≤ i ≤ n, and Ω-term

x11 . . . x1k1 . . . xl1 . . . xlkl
x(n+1)1 . . . x(n+1)kn+1

. . . x(n+r)1 . . . x(n+r)kn+r
q :=

= x11 . . . x1k1q1 . . . xl1 . . . xlkl
qlx(n+1)1 . . . x(n+1)kn+1

qn+1 . . .

. . . x(n+r)1 . . . x(n+r)kn+r
qn+r q∗,

where x1 . . . xlxn+1 . . . xn+r q∗ is a linear term and for 1 ≤ i ≤ l and n+1 ≤
i ≤ n + r, xi1 . . . xiki qi are Ω-terms such that at least one of them is non-
linear. Then the algebra (AS,Ω) satisfies the identity (4.5).

Note that (4.5) is a non-linear consequence of a non-linear identity.

Proof. For 1 ≤ i ≤ n + r, let (Ai, Ω) be subalgebras of (A,Ω). Then

A1 . . . AlAl+1 . . . Anp = A1 . . . A1
k1−times

. . . Al . . . Al
kl−times

Al+1 . . . Al+1
kl+1−times

. . . An . . . An
kn−times

p∗

=
{
a11 . . . a1k1 . . . al1 . . . alkl

a(l+1)1 . . . a(l+1)kl+1
. . . an1 . . . ankn p∗ | aij ∈ Ai

}

=
{
a11 . . . a1k1q1 . . . al1 . . . alk1qlan+11 . . . a(n+1)kn+1

qn+1 . . .

. . . a(n+r)1 . . . a(n+r)kn+r
q∗| aij ∈ Ai

}
⊆ A1 . . . AlAn+1 . . . An+r q∗,

because for each 1 ≤ i ≤ l and n + 1 ≤ i ≤ n + r, ai 1 . . . ai k i
qi is in Ai.

On the other hand, since for V -algebras (4.4) implies (4.5), one has

A1 . . . AlAn+1 . . . An+r q∗ = {a1 . . . alan+1 . . . an+r q∗ | ai ∈ Ai}

= { a1 . . . alal+1 . . . an p | ai ∈ Ai} ⊆ A1 . . . AlAl+1 . . . Anp.

Hence A1 . . . AlAl+1 . . . An p = A1 . . . AlAn+1 . . . An+r q∗ and (4.5) is satis-
fied in (AS, Ω).

The next results are based on the following Proposition.

Proposition 4.7. Let V be a variety of idempotent Ω-algebras. Let
x1 . . . xlxl+1 . . . xnp and x1 . . . xlxn+1 . . . xn+rq be Ω-terms and let p=q hold
in V S. Then there are Ω-terms p̃ and q∗ such that:

(i) p̃ is a generalisation of p;
(ii) q∗ is a linearisation of q;
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(iii) p̃ = q∗ holds in V ;
(iv) p = q is a consequence of p̃ = q∗.

Proof. Let X be a countable infinite set of variables and FV (X) be the
free V -algebra over X. Let x11 . . . x1k1 . . . xl1 . . . xlkl

x(l+1)1 . . . x(l+1)kl+1
. . .

. . . xn1 . . . xnknp∗ be a linearisation of the term p and x11 . . . x1k1 . . . xl1 . . .

. . . xlkl
x(n+1)1 . . . x(n+1)kn+1

. . . x(n+r)1 . . . x(n+r)kn+r
q∗ be a linearisation of

the term q, such that p is obtain from p∗ and q is obtain from q∗ by
substituting xi for xi1, . . . , xiki , with 1 ≤ i ≤ n + r. Such terms p∗ and
q∗ exist by Lemma 1.1.

Let (Fi, Ω) be the subalgebra of FV (X) generated by the set
{xij ∈ X | j = 1, . . . , ki}. Note that all these subalgebras are non empty
and pairwise disjoint.

Obviously the element

b = x11 . . . x1 k 1 . . . xl1 . . . xl kl
x(n+1)1 . . . x(n+1)kn+1

. . . x(n+r)1 . . . x(n+r)kn+r
q∗

belongs to the set

F1 . . . F1
k1−times

. . . Fl . . . Fl
k1−times

. . . Fn+1 . . . Fn+1
kn+1−times

. . . Fn+r . . . Fn+r
kn+r−times

q∗

= Fl . . . F1Fn+1 . . . Fn+rqF1 . . . FlFl+1 . . . Fnp =

F1 . . . F1
k1−times

. . . Fl . . . Fl
k1−times

. . . Fl+1 . . . Fl+1
kl+1−times

. . . Fn . . . Fn
kn−times

p∗

=
{
b11 . . . b1 k 1 . . . bl1 . . . blkl

b(l+1)1 . . . b(l+1)kl+1
. . . bn1 . . . bn k n p∗|

bij ∈ Fi, i = 1, . . . , n, j = 1, . . . , ki} .

So the element b is in the subalgebra F1 . . . FlFl+1 . . . Fn p and
b = b11 . . . b1 k1 . . . bl1 . . . blkl

b(l+1)1 . . . b(l+1)kl+1
. . . bn1 . . . bn kn p∗, where bij =

yi1 . . . yi mij tij for some terms tij with yi1, . . . , yi mij a subset of xi1, . . . , xi ki

for each i = 1, . . . , n and j = 1, . . . , ki. It follows that the identity

y11 . . . y1m11t11y11 . . . y1m12t12 . . . yn1 . . . ynmnkn
tnkn p∗

= x11 . . . x1 k 1 . . . xl1 . . . xlkl
x(n+1)1 . . . x(n+1) k n+1

. . . x(n+r)1 . . . x(n+r) k n+r
q∗

holds in V .
Let p̃ be the term y11 . . . y1m11t11y11 . . . y1m12t12 . . . yn1 . . . ynmnkn

tnkn p∗.
Observe, that p̃ is a generalization of p, because by substituting xi for
xi 1, xi 2, . . . , xi ki

for each 1 ≤ i ≤ n in p̃, we obtain
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x1 . . . x1
m11−times

t11 x1 . . . x1
m12−times

t12 . . . xn . . . xn
mnkn

−times
tnkn p∗

= x1 . . . x1
k1−times

. . . xn . . . xn
kn−times

p∗ = x1 . . . xnp.

It is clear that the identity p = q is a consequence of p̃ = q∗. This completes
the proof of the Proposition.

Note that the term p̃ in Proposition 4.7. may not be linear because Ω-terms
tij do not need to be linear. But, if tij are linear for each i = 1, . . . , n and
j = 1, . . ., ki, then the identity

y11 . . . y1m11t11y11 . . . y1m12t12 . . . yn1 . . . ynmnkn
tnkn p∗

= x11 . . . x1 k1 . . . xl1 . . . xlkl
x(n+1)1 . . . x(n+1) kn+1

. . . x(n+r)1 . . . x(n+r) kn+r
q∗

is linear. Hence in this case the identity p = q is a consequence of a linear
identity satisfied in V .

We denote by var(q) the set of all variables occurring in q. As a corollary
of Proposition 4.7. we get the following.

Corollary 4.8. Let V be a variety of idempotent Ω-algebras. Let
x1 . . . xlxl+1 . . . xnp be an Ω-term and x1 . . . xlxn+1 . . . xn+rq

∗ be a linear
Ω-term. Let p = q∗ be an identity true in V S. Then there are Ω-terms
p∗, q1, . . . , ql, qn+1, . . . , qn+r such that:

(i) p∗ is a linearisation of p;

(ii) var(qi) ∩ var(qj) = ∅ for each 1 ≤ i, j ≤ l and n + 1 ≤ i, j ≤ n + r ,
i 6= j;

(iii) if q is obtained from q∗ by substituting qi for xi where 1 ≤ i ≤ l
and n + 1 ≤ i ≤ n + r, then p∗ = q holds in V ;

(iv) p = q∗ is a consequence of p∗ = q.

Proof. Let X be a countable infinite set of variables and let FV (X) be the
free V -algebra over X. Let x11 . . . x1k1 . . . xl1 . . . xlkl

x(l+1)1 . . . x(l+1)kl+1
. . .

. . . xn1 . . . xnknp∗ be a linearisation of p, such that p is obtained from p∗

by substituting xi for xi1, . . . , xiki
with 1 ≤ i ≤ n. Let (Fi, Ω) be the

subalgebra of FV (X) generated by the set {xij ∈ X | j = 1, . . . , ki}, as in
Proposition 4.7. Then
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F1 . . . FlFn+1 . . . Fn+rq
∗ = F1 . . . FlFl+1 . . . Fnp

=
{
a11 . . . a1k1 . . . al1 . . . alk1a(l+1)1 . . . a(l+1)kl+1

. . . an1 . . . an+knp∗|
aij ∈ Fi, i = 1, ..., n, j = 1, ..., ki} .

Moreover the element x11 . . . x1k1 . . . xl1 . . . xlkl
x(l+1)1 . . . x(l+1)kl+1

. . .
. . . xn1 . . . xnknp∗ belongs to the set F1 . . . FlFn+1 . . . Fn+rq

∗. Thus

x11 . . . x1k1 . . . xl1 . . . xlkl
x(l+1)1 . . . x(l+1)kl+1

. . . xn1 . . . xnkn p∗

= b1 . . . blbn+1 . . . bn+rq
∗,

where for each 1 ≤ i ≤ l and n + 1 ≤ i ≤ n + r, bi = yi1 . . . yimiqi for
some terms qi with {yi1, . . . , yimi} a subset of {xi1, . . . , xiki}. So for each
1 ≤ i ≤ l and n + 1 ≤ i ≤ n + r, bi is in (Fi, Ω). Because the sets Fi are
pairwise disjoint, var(qi)∩ var(qj) = ∅, for 1 ≤ i ≤ l and n + 1 ≤ i ≤ n + r.

Note, that if for each 1 ≤ i ≤ l and n + 1 ≤ i ≤ n + r, terms qi are linear
then the identity p∗ = q is also linear.

Proposition 4.7 and Corollary 4.8 do not give an effective way to decide
whether an identity p = q true in V S is a consequence of linear and
idempotent identities satisfied in V . However they may provide a good
tool to find an identity satisfied in V such that the identity p = q is its
consequence.

Example 4.9. Let R be a commutative ring with unity and let (E, +, R)
be a module over R. For each element r of R, define a binary operation
by

r : E ×E → E; (x, y) 7→ (1− r)x + ry,

and the Mal’cev operation P by

P : E × E × E 7→ E; (x, y, z) 7→ x− y + z.

Then the algebra (E, R, P ), with the ternary operation P and the set
R = {r | r ∈ R} of binary operations, has as its derived operations (those
obtained from successive compositions of the basic operations P and r
for r in R) precisely the affine combinations r1x1 + r2x2 + . . . + rnxn

with r1 + r2 + . . . + rn = 1 of elements x1, x2, . . . , xn of E. The set
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E together with all the idempotent term operations (considered as fun-
damental) is called the full idempotent reduct of the R-module (E, +, R)
([17]). It follows that the algebra (E,R, P ) is equivalent to the full idempo-
tent reduct (E, {r1x1 + r2x2 + . . . + rnxn | r1, r2, . . . , rn ∈ R,

∑n
i=1 ri = 1})

of the module (E,+, R). Note that the algebra (E,R,P) has the affine group
as its group of automorphisms, and may thus be identified with the affine
geometry ([7]). Carrying out this identification, we will refer to the algebra
(E,R, P ) as an affine space over R or an affine R-space. (Note, however,
that such algebras have also been called affine modules).

It is well known that the class of affine spaces over a commutative ring
r with unity is a variety. According to [10], this variety is equivalent to the
variety R of Mal’cev modes (E, R, P ), algebras with the ternary Mal’cev
operation P and one binary operation r for each r in R, satisfying the
identities defining modes and for all p, q, r in r the identities:

(A1) xyxP = yx 2 ,
(A2) xyp xyq r = xypqr,
(A3) xyp xyq xyr P = xypqr P ,
(A4) xy 0 = yx 1 = x.

The algebra (ES, R, P ) is again a mode satisfying each linear identity sat-
isfied by (E,R, P ). In general the algebra (ES, R, P ) is not an affine space.

Note that the identity (A4) is linear. Hence it is clearly satisfied in the
variety RS. We will show that for some p, q, r in R the identities (A1) –
(A3) are also satisfied in the variety RS. First we will prove the following
lemma.

Lemma 4.10. Suppose that for some p, q, r in R, the identity (A2) is
satisfied in RS. Then the identity (A2) is a consequence of a linear identity
satisfied in R.

Proof. To prove the lemma we will use a similar method as in the proof of
Proposition 4.7. Let Z = {x1, x2, y1, y2} be a set of variables and FR(Z)
be the free R-algebra over Z. Note that the term

x1x2y1y2t
∗ := x1y1px2y2qr

is a linearisation of the term xyt = xyp xyq r, where t is obtained from t∗

by substituting x for x1 and x2 and y for y1 and y2.
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Let (A1, R, P ) be the subalgebra of FR(Z) generated by the set {x1, x2}
and (A2, R, P ) be the subalgebra of FR(Z) generated by the set {y1, y2}.

If for some p, q, r in R, (A2) is satisfied in RS, then sets A1A2t =
A1A1A2A2t

∗ and A1A2pqr are equal. Then obviously the element b =
x1x2y1y2t

∗ belongs to the set

A1A2pqr =
{
a1a2pqr | a1 ∈ A1, a2 ∈ A2

}
.

Hence b = a1a2pqr, where a1 = x1x2t1 and a2 = y1y2t2 for some term
t1 in (A1, R, P ) and term t2 in (A2, R, P ). Recall that all binary term
operations of (E, R, P ) have the form wx1 + (1− w)x2, for some w in R.
This implies that there are w and v in r such that the following identity

(4.11) x1x2wy1y2vpqr = x1x2y1y2t
∗ = x1y1px2y2qr

holds in R. Consequently, if for some p, q, r in R, (A2) is satisfied in RS,
then it is a consequence of the linear identity (4.11) satisfied in R.

Corollary 4.12. For p, q, r in R such that ((1 − r)p + rq) and
(1− (1− r)p− rq) are invertible, the identity (A2) is satisfied in RS.

Proof. Note that for any R-algebra (A, R, P ) and x1, x2, y1, y2 in a
x1x2wy1y2vpqr = (1 − p(1 − r) − qr)(1 − w)x1 + (1 − p(1 − r) − qr)wx2

+(p(1− r) + qr)(1− v)y1 + (p(1− r) + qr)vy2 and

x1y1px2y2qr = (1− r)(1− p)x1 + r(1− q)x2 + (1− r)py1 + rqy2.

If (1 − r)p + rq and 1 − ((1 − r)p + rq) are invertible in R, then for
w = (1− q)r(1− p(1− r)− qr)−1 and v = qr(p(1− r) + qr)−1 the identity
(4.11) is satisfied in R. It follows that for invertible ((1 − r)p + rq) and
(1− ((1− r) + rq)), (A2) is a consequence of the linear identity (4.11) and
consequently, it is satisfied in RS.

Lemma 4.13. Suppose that for some p, q, r in R, the identity (A3) is
satisfied in RS. Then the identity (A3) is a consequence of a non-linear
identity of the type (4.4) satisfied in R.

Proof. Let Z = {x1, x2, x3, y1, y2, y3} be a set of variables and FR(Z) be
the free R-algebra over Z. Note that the term

x1x2x3y1y2y3t
∗ := x1y1px2y2qx3y3rP
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is a linearisation of the term xyt := xyp xyq xyrP , where t is obtained
from t∗ by substituting x for x1, x2 and x3 and y for y1, y2 and y3.

Let (A1, R, P ) be the subalgebra of FR(Z) generated by the set
{x1, x2, x3} and (A2, R, P ) be the subalgebra of FR(Z) generated by the
set {y1, y2, y3}.

If for some p, q, r in R, (A3) is satisfied in RS, then sets A1A2t =
A1A1A1A2A2A2t

∗ and A1A2pqrP are equal. Then obviously the element
b = x1x2x3y1y2y3t

∗ belongs to the set

A1A2pqrP =
{
a1a2pqrP | a1 ∈ A1, a2 ∈ A2

}
.

Hence b = a1a2pqrP , where a1 = x1x2x3t1 and a2 = y1y2y3t2 for some
term t1 in (A1, R, P ) and term t2 in (A2, R, P ). Recall that all ternary
term operations of (E,R, P ) have the form, for some p1 and p2 in R. This
implies that there are r1, r2, s1, s2 in r such that the following identity

x3x1r1x3x3x2r2Py3y1s1y3y3y2s2PpqrP = x1y1px2y2qx3y3rP

holds in R.
Let

x1x2x3y1y2y3p
∗ := x1y1px2y2qx3y3rP,

x1x2x3q1 := x3x1r1x3x3x2r2P,

y1y2y3q2 := y3y1s1y3y3y2s2P

and
xyq∗ := xypqrP .

Then, if for some p, q, r in R, (A3) is satisfied in RS, then it is a conse-
quence of the non- linear identity

(4.14) x1x2x3y1y2y3p
∗ = x1x2x3q1y1y2y3q2q

∗

satisfied in R.

Corollary 4.15. For p, q, r in R such that (p−q+r) and (1−p+q−r)
are invertible, the identity (A3) is satisfied in RS.

Proof. Now note that for any R-algebra (A,R, P ) and x1, x2, x3, y1,
y2, y3 in A

x1x2x3y1y2y3p
∗ = x1y1px2y2qx3y3rP

= (1− p)x1 − (1− q)x2 + (1− r)x3 + py1 − qy2 + ry3
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and

x1x2x3q1y1y2y3q2q
∗ = x3x1r1x3x3x2r2Py3y1s1y3y3y2s2PpqrP

= (1− p + q − r)r1x1 + (1− p + q − r)r2x2+(1− p + q − r)(1− r1 − r2)x3+

+(p− q + r)s1y1 + (p− q + r)s2y2 + (p− q + r)(1− s1 − s2)y3.

If (p − q + r) and (1 − p + q − r) are invertible in R, then for r1 =
(1− p)(1− p+ q− r)−1, r2 = −(1− q)(1− p+ q− r)−1, s1 = p(p− q + r)−1

and s2 = −q(p− q + r)−1 the identity (4.14.) is satisfied in R.
By substituting x for x1, x2 and x3 and y for y1, y2 and y3 in

(4.14) we obtain the identity (A3). Hence for invertible (p − q + r) and
(1− p+ q− r), (A3) is a consequence of the non-linear identity (4.14) of the
type (4.4) true in R. By Proposition 4.6. the identity (A3) is also satisfied
in RS.

Now we are left with the following question. Is the identity (4.14) a conse-
quence of some linear identity true in R?

Lemma 4.16. Suppose that the identity (A1) is satisfied in RS. Then the
identity (A1) is a consequence of a linear identity satisfied in R.

Proof. Let Z = {x1, x2, y} be a set of variables and FR(Z) be the free
R-algebra over Z. Note that the term

x1x2yt∗ := x1yx2P

is a linearisation of the term xyt := xyxP , where t is obtained from t∗ by
substituting x for x1 and x2.

Let (A,R, P ) be the subalgebra of FR(Z) generated by the set
{x1, x2} and (y,R, P ) be one element subalgebra of FR(Z).

If the identity (A1) is satisfied in RS, then sets Ayt = AAyt∗ and yA2
are equal. Then obviously the element b = x1x2yt∗ belongs to the set

{y}A2 = {ya2 | a ∈ A} .

Hence b = ya2, where a = x1x2s for some term s in (A,R, P ). This implies
that there is r in R such that the following identity

(4.17) x1yx2P = yx1x2r2

holds in R. Consequently, if (A1) is satisfied in RS, then it is a consequence
of the linear identity (4.17) satisfied in R.
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Corollary 4.18. If the element 2 of a ring r is invertible, the identity
(A1) is satisfied in RS.

Proof. It is easy to see, that for any R-algebra (A,R, P ) and x1, x2, y
in A

x1yx2P = x1 − y + x2

and
yx1x2r2 = 2(1− r)x1 + 2rx2 − y.

If 2 is invertible in R, then for r = 2−1 the identity (4.17) is satisfied in R.
It follows that for invertible 2, (A1) is a consequence of the linear identity
(4.17) and consequently it is satisfied in RS.

As was shown in [10], (see p. 256) if the element 2 of a ring R is invertible,
the identities (A1) - (A4) for R may be reduced to (A2) and (A4). Conse-
quently, for p, q, r and 2 in R such that ((1−r)p+rq), (1− (1−r)p−rq)
and 2 are invertible, identities (A2) and (A4) are satisfied in RS.

The following open question arised during preparation of this paper.
Let V be a variety of idempotent algebras. Is it true that V = V S if and
only if V is defined by a set of linear and idempotent identities?
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