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Abstract. In a number of papers M.Ginsberg introduced algebras called
bilattices having two separate lattice structure and one additional ba-
sic unary operation. They originated as an algebraization of some non-
classical logics that arise in artificial intelligence and knowledge-based
logic programming. In this paper we introduce some new class of bilat-
tices which originate from interval lattices and show that each of them is
simple. A known simple lattices are used to give other examples of simple
bilattices. We also describe simple bilattices satisfying some additional
identities so called P-bilattices (or interlaced bilattices).

1 Introduction

In a number of papers M.Ginsberg [6], [7] introduced algebras called bilattices
having two separate lattice structure and one additional basic unary operation
acting on both lattices in a very regular way. Bilattices originated as an al-
gebraization of some non-classical logics that arise in artificial intelligence and
knowledge-based logic programming. The two lattice orderings of a bilattice
may be viewed as the degrees of truth and knowledge of possible events. In
general, both lattice structures of a bilattice are ”almost” not connected to
each other. However bilattices appearing in applications usually satisfy some
additional conditions. Bilattices were also investigated by Fitting, Romanowska,
Avron, Mobasher, Pigozzi, Slutzki, Voutsadakis, Pynko and others.

In [5] M.Fitting described a structure based on intervals of a lattice with
one lattice and one semilattice orderings. The main purpose of this paper is to
introduce a new class of bilattices which also originates from interval lattices
and to show that such bilattices are simple.

In Sect. 1 we collect some useful facts about interval lattices, and bilattices.
Interval bilattices, a new class of bilattices which originate from interval lat-
tices, are described in Sect. 2. In Sect. 3 we show that all interval bilattices
are simple. In Sect. 4 a known simple lattices are used to give other examples
of simple bilattices. Finally, we describe simple P -bilattices (bilattices satisfy-
ing some additional identities which were introduced and investigated in [13].
P-bilattices were also investigated under the name of ”interlaced” bilattices by
other authors.).
? The paper was written within the framework of COST Action 274.



2 Preliminaries

Let L = (L,∨,∧) be a lattice with the ordering relation ≤. The sublattice
[a, b] = {x ∈ L|a ≤ x ≤ b} of L is called an interval with the end-points a and
b. The empty subset of L is also considered as an interval [ , ]. The family of all
intervals in L is denoted by IntL.
IntL is a lattice IntLk = (IntL, ◦,+) under set inclusion ≤k. We have that
[a, b] ≤k [c, d] if and only if a ≥ c and b ≤ d. The lattice operations are defined
by the following formulas:

[a, b] ◦ [c, d] :=
{

[a ∨ c, b ∧ d] if a ∨ c ≤ b ∧ d
[ , ] otherwise (1)

[a, b] + [c, d] := [a ∧ c, b ∨ d] . (2)

The lattice IntLk will be called an interval lattice. Note that the empty interval
[ , ] is the least element in this lattice. The interval lattices were studied by
W.Duthie [2] and by V.Igoshin [8].

Definition 1. A bilattice B = (B,∧,∨, ◦, +,¬, 01, 11, 02, 12) is an algebra such
that

1. (B,∧,∨, 01, 11) and (B, ◦, +, 02, 12) are bounded lattices.
2. A negation ¬ : B → B is an unary operation on B satisfying for all x, y ∈ B

the identities:
¬¬x = x, (3)

¬(x ∨ y) = ¬x ∧ ¬y (4)

¬(x ∧ y) = ¬x ∨ ¬y (5)

¬(x + y) = ¬x + ¬y (6)

¬(x ◦ y) = ¬x ◦ ¬y . (7)

Definition 2. A bilattice B = (B,∧,∨, ◦, +,¬, 01, 11, 02, 12) satisfying the fol-
lowing identities:

((x ∧ y) ◦ z) ∧ (y ◦ z) = (x ∧ y) ◦ z (8)

((x ◦ y) ∧ z) ◦ (y ∧ z) = (x ◦ y) ∧ z (9)

((x ∧ y) + z) ∧ (y + z) = (x ∧ y) + z (10)

((x + y) ∧ z) + (y ∧ z) = (x + y) ∧ z (11)

will be called P-bilattice.

The following results were proved in [13]. (See also [1], [4] and [12].)



Theorem 1. Let L = (L,∧,∨, 0, 1) be a bounded lattice. On a set L × L we
define an algebra B(L) = (L× L,∧,∨, ◦,+,¬, 01, 11, 02, 12) as follows:
for all (x, x′), (y, y′) in L× L,

(x, x′) ∧ (y, y′) := (x ∧ y, x′ ∨ y′) (12)

(x, x′) ∨ (y, y′) := (x ∨ y, x′ ∧ y′) (13)

(x, x′) ◦ (y, y′) := (x ∧ y, x′ ∧ y′) (14)

(x, x′) + (y, y′) := (x ∨ y, x′ ∨ y′) (15)

¬(x, y) := (y, x) (16)

01 := (0, 1), 11 := (1, 0), 02 := (0, 0), 12 := (1, 1) . (17)

The algebra B(L) is a P-bilattice.

The bilattice B(L) will be called a product bilattice associated with the lattice L.

Theorem 2. An algebra B = (B,∧,∨, ◦, +,¬, 01, 11, 02, 12) is a P-bilattice if
and only if there is a bounded lattice L = (L,∧,∨, 0, 1), such that B is isomorphic
to the product bilattice B(L) associated with the lattice L.

3 A construction of interval bilattices

Let L = (L,∧,∨,¬, 0, 1) be a bounded lattice with a polarity ¬ : L → L and
ordering relation ≤. Let Int0L be the family of all intervals of L excluding the
empty interval. In Int0L define two binary operations as follows:

[a, b] ∧ [c, d] := [a ∧ c, b ∧ d] (18)

[a, b] ∨ [c, d] := [a ∨ c, b ∨ d] . (19)

Proposition 1. The algebra Int0Lt = (Int0L,∧,∨, [0, 0], [1, 1]) is a bounded
lattice.

Proof. It is evident that if a ≤ b and c ≤ d then a ∧ c ≤ b ∧ d and a ∨ c ≤ d ∨ d.
Therefore
[a, b] ∨ [a, b] = [a ∨ a, b∨, b] = [a, b],
[a, b] ∨ [c, d] = [a ∨ c, b ∨ d] = [c ∨ a, d ∨ b] = [c, d] ∨ [a, b],
([a, b] ∨ [c, d]) ∨ [e, f ] = [a ∨ c, b ∨ d] ∨ [e, f ] = [a ∨ c ∨ e, b ∨ d ∨ f ] =
= [a, b] ∨ [c ∨ e, d ∨ f ] = [a, b] ∨ ([c, d] ∨ [e, f ]),
[a, b] ∨ ([a, b] ∧ [c, d]) = [a ∨ b] ∨ [a ∧ c, b ∧ d] = [a ∨ (a ∧ c), b ∨ (b ∧ d)] = [a, b].
Simillarly, we can show that the second operation ∧ is idempotent, commutative
and associative.
Moreover, for all [a, b] in Int0L:
[a, b] ∨ [1, 1] = [a ∨ 1, b ∨ 1] = [1, 1],
[a, b] ∧ [0, 0] = [a ∧ 0, b ∧ 0] = [0, 0].
It follows that Int0Lt is a bounded lattice with the least element [0, 0] and the
greatest element [1, 1]. ut



Corollary 1. The ordering relation ≤t of a lattice Int0Lt is defined by

[a, b] ≤t [c, d] if and only if a ≤ c and b ≤ d . (20)

Now let IntLt be the extension of the partially ordered set (Int0L,≤t) by
the empty interval [ , ]. By definition [ , ] covers [0, 0], is covered by [1, 1] and is
not comparable with any other interval of L.
In IntL we define one unary operation ¬ : IntL → IntL by

¬[a, b] := [¬b,¬a] (21)

¬[ , ] := [ , ] . (22)

Note that if a ≤ b then ¬b ≤ ¬a, whence [¬b,¬a] is an interval in L.

Proposition 2. The algebra BIntL = (IntL,∧,∨, ◦,+,¬, [0, 0], [1, 1], [ , ], [0, 1])
is a bilattice.

Proof. Since the lattice L = (L,∧,∨,¬, 0, 1) is bounded, the lattice IntLk has
the greatest element [0, 1]. Hence IntLt = (IntL,∧,∨, [0, 0], [1, 1]) and IntLk =
(IntL, ◦, +, [ , ], [0, 1]) are bounded lattices.

Note that the unary operation ¬ : IntL → IntL is an involution

¬¬[a, b] = ¬[¬b,¬a] = [a, b] . (23)

It reverses the order ≤t and preserves the order ≤k.
Indeed, if [a, b] ≤t [c, d] then a ≤ c and b ≤ d implying ¬a ≥ ¬c and ¬b ≥ ¬d.
Hence [¬b,¬a] ≥t [¬d,¬c] and ¬[a, b] ≥t ¬[c, d].
If [a, b] ≤k [c, d] then [a, b] + [c, d] = [a ∧ c, b ∨ d] = [c, d] implying
¬[a ∧ c, b ∨ d] = [¬(b ∨ d),¬(a ∧ c)] = [¬b ∧ ¬d,¬a ∨ ¬c] =
= [¬b,¬a] + [¬d,¬c] = ¬[a, b] + ¬[c, d] = ¬[c, d].
Hence, ¬[a, b] ≤k ¬[c, d].
It follows that BIntL is a bilattice. ut
Definition 3. The bilattice BIntL = (IntL,∧,∨, ◦, +,¬, [0, 0], [1, 1], [ , ], [0, 1])
will be called an interval bilattice.

Example 1. Let ({0, 1},∧,∨,¬, 0, 1) be two element chain. In this case IntL =
{[ , ], [0, 0], [1, 1], [0, 1]} and the interval bilattice BIntL is isomorphic to four
element distributive bilattice B4.

Lemma 1. Let L = (L,∧,∨,¬, 0, 1) be an arbitrary bounded polarity lattice with
more than two elements. Then the interval bilattice BIntL = (IntL,∧,∨, ◦, +,¬,
[0, 0], [1, 1], [ , ], [0, 1]) is not a P-bilattice.

Proof. Let a 6= 0 and a 6= 1 be an element in L. We have
(([ , ] ∧ [0, a]) ◦ [a, 1]) ∧ ([0, a] ◦ [a, 1]) = ([0, 0] ◦ [a, 1]) ∧ [0 ∨ a, a ∧ 1] =
= [0 ∨ a, 0 ∧ 1] ∧ [a, a] = [ , ] ∧ [a, a] = [0, 0]
and



([ , ] ∧ [0, a]) ◦ [a, 1] = [0, 0] ◦ [a, 1] = [ , ].
It follows that identity

((x ∧ y) ◦ z) ∧ (y ◦ z) = (x ∧ y) ◦ z (24)

is not satisfied in the interval bilattice BIntL. Hence BIntL is not a P-bilattice.
ut

4 Congruence lattices of interval bilattices

In this section we give a characterization of the lattice of congruence relations
of an interval bilattice. Let BIntL be an interval bilattice obtained from some
bounded polarity lattice L= (L,∧,∨,¬, 0, 1). The lattice of congruence relations
of BIntL will be denoted by ConBIntL.

Theorem 3. For any bounded polarity lattice L= (L,∧,∨,¬, 0, 1), the congru-
ence lattice ConBIntL is isomorphic to the 2-element chain.

Proof. Let a, b, c, d be in L, d 6= 0, d 6= 1 and θ be a non-zero congruence relation
of BIntL.
First note that if [a, b] ≤k [c, d] then c ≤ a ≤ b ≤ d and
[a, b] ◦ [d, d] = [a ∨ d, b ∧ d] = [ , ]
and
[c, d] ◦ [d, d] = [c ∨ d, d ∧ d] = [d, d].
Therefore it is easy to see that if [a, b] ≤k [c, d] and [a, b] and [c, d] are in θ then
[d, d] and [ , ] are in θ too.
It is well known that in a lattice (L,∧,∨), elements x and y are in some congru-
ence relation ϕ if and only if x ∧ y and x ∨ y are in ϕ.

Since by definition intervals [d, d] and [ , ] are not comparable with respect
to ≤t, it is clear that if [d, d] and [ , ] lie in θ, then θ also contains [0, 0] and [1, 1],
and hence all other intervals.

Moreover, if [1,1] and [ , ] (or [0,0] and [ , ]) are in θ, then ¬[1, 1] = [0, 0] and
¬[ , ] = [ , ] (or ¬[0, 0] = [1, 1] and [ , ]) are in θ too.

It follows that θ is the largest trivial congruence relation. ut
Corollary 2. For any bounded polarity lattice L, the interval bilattice BIntL
is simple.

5 Further examples of simple bilattices

In this section we give further examples of simple bilattices.

Example 2. Let n, i and j be natural numbers and let
Qn := {(0, 0), (1, 1)} ∪ {(2−i, 0)|0 ≤ i ≤ n− 1} ∪ {(0, 2−i)|0 ≤ i ≤ n− 1}∪
∪{(2−i, 2−j)|1 ≤ i, j ≤ n and |i− j| ≤ 1}.
Let Qn

k = (Qn,≤k) be the set Qn with the order ≤k defined by

(a1, b1) ≤k (a2, b2) iff a1 ≤ a2 and b1 ≤ b2 . (25)



And let Qn
t = (Qn,≤t) be the set Qn with the order ≤t defined by

(a1, b1) ≤t (a2, b2) iff a1 ≤ a2 and b1 ≥ b2 . (26)

Obviously, Qn
k and Qn

t are lattices.
The lattices Qn

k and Qn
t with the unary operation ¬(a, b) := (b, a) form the

bilattice Qn. First note that the unary operation ¬ : Qn → Qn is an involution:
¬¬(a, b) = (a, b). Moreover, it reverses the order ≤t and preserves the order ≤k,
because
(a1, b1) ≤k (a2, b2) ⇔ a1 ≤ a2 and b1 ≤ b2 ⇔
⇔ ¬(a1, b1) = (b1, a1) ≤k (b2, a2) = ¬(a2, b2)
and
(a1, b1) ≤t (a2, b2) ⇔ a1 ≤ a2 and b1 ≥ b2 ⇔
⇔ ¬(a1, b1) = (b1, a1) ≥t (b2, a2) = ¬(a2, b2).
By R.Wille [14] the lattice Qn

k is simple. Because if a lattice reduct of a bilattice
is simple then the bilattice in question is always simple, too, the bilattice Qn is
simple.

Example 3. Let n ≥ 2 be a natural number and Q2n
0 := Qn∪Pn−{(0, 1), (1, 0)},

where Qn is the set defined in Ex. 2 and Pn := {(1− x, 1− y)|(x, y) ∈ Qn}.
In Q2n

0 define partial order ≤t as follows:

(a, b) ≤t (c, d) iff a ≤ c and b ≤ d . (27)

Now let Q2n
t be the extension of the partially ordered set (Q2n

0 ,≤t) by a single
element (0,1). By definition (0,1) covers (2−n, 2−n), is covered by (1− 2−n, 1−
2−n) and is not comparable with any other element of the set Q2n

0 different from
(1,1) and (0,0). It is clear that Q2n

t is a bounded lattice with (1,1) as the greatest
element and (0,0) as the least element.

Moreover in Q2n := Q2n
0 ∪ {(0, 1)} define two binary operations as follows:

(a, b) ◦ (c, d) :=





(max(a, c), max(b, d)) if (a, b), (c, d) ∈ Qn − {(0, 1), (1, 1)}
(min(a, c), min(b, d)) if (a, b), (c, d) ∈ Pn − {(0, 1), (0, 0)}

( 1
2 , 1

2 ) otherwise

(a, b)+(c, d) :=





(min(a, c),min(b, d)) if (a, b), (c, d) ∈ Qn − {(0, 1), (1, 1)}
(max(a, c),max(b, d)) if (a, b), (c, d) ∈ Pn − {(0, 1), (0, 0)}

(0, 1) otherwise
.

It is easy to see that Q2n
k = (Q2n, ◦,+, (1

2 , 1
2 ), (0, 1)) is a bounded lattice.

On the set Q2n we define the unary operation

¬(a, b) := (1− b, 1− a) . (28)

It is easy to note that Q2n
k and Q2n

t with the above unary operation is a bilattice
Q2n . As was shown by R. Wille [14], the lattice Q2n

t is simple. Hence the bilattice
Q2n is simple too.

The following result was proved in [13].



Lemma 2. Let B = (B,∧,∨, ◦,+,¬, 01, 11, 02, 12) be a P-bilattice isomorphic
to the product bilattice B(L) associated with the lattice L = (L,∧,∨). Then the
lattice ConB is isomorphic to the lattice ConL.

As an easy consequence of this lemma we obtain the following corollary.

Corollary 3. A P-bilattice B(L) is simple if and only if the lattice L is simple.
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