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Abstract. This paper is devoted to the semilattice ordered V-algebras of
the form (A,Ω,+), where + is a join-semilattice operation and (A,Ω) is an

algebra from some given variety V. We characterize the free semilattice ordered
algebras using the concept of extended power algebras. Next we apply the
result to describe the lattice of subvarieties of the variety of semilattice ordered

V-algebras in relation to the lattice of subvarieties of the variety V.

1. Introduction

Ordered algebraic structures, particularly ordered fields, ordered vector spaces,
ordered groups and semigroups, have a well-established tradition in mathematics.
It is due to their internal interest and due to their applications in other areas.

Special class of ordered algebras is given by semilattice ordered ones.
Let 0 be the variety of all algebras (A,Ω) of finitary type τ : Ω → N and let V ⊆ 0

be a subvariety of 0.

Definition 1.1. An algebra (A,Ω,+) is called a semilattice ordered V-algebra (or
briefly semilattice ordered algebra) if (A,Ω) belongs to a variety V, (A,+) is a (join)
semilattice (with semilattice order ≤, i.e. x ≤ y ⇔ x+ y = y), and the operations
from the set Ω distribute over the operation +, i.e. for each 0 ̸= n-ary operation
ω ∈ Ω, and x1, . . . , xi, yi, . . . , xn ∈ A

ω(x1, . . . , xi + yi, . . . , xn) =(1.1.1)

ω(x1, . . . , xi, . . . , xn) + ω(x1, . . . , yi, . . . , xn),

for any 1 ≤ i ≤ n.

Basic examples of semilattice ordered algebras are provided by additively idem-
potent semirings, distributive lattices, semilattice ordered semigroups and modals
(semilattice ordered idempotent and entropic algebras).

In 1979 R. McKenzie and A. Romanowska [10] showed that there are exactly
five varieties of dissemilattices - semilattice ordered semilattices. Apart from the
variety of all dissemilattices and the trivial variety, there are the variety of distribu-
tive lattices, the variety of ”stammered” semilattices (where both basic semilattice
operations are equal) and the variety of distributive dissemilattices.
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In 2005 S. Ghosh, F. Pastijn and X.Z. Zhao [5] described the lattice of all subva-
rieties of the variety generated by all ordered bands (semirings whose multiplicative
reduct is an idempotent semigroup and additive reduct is a chain). They showed
that the lattice is distributive and contains precisely 78 varieties. Each of them is
finitely based and generated by a finite number of finite ordered bands.

In the same year, M. Kuřil and L. Polák [9] introduced the certain closure oper-
ators on relatively free semigroup reducts and applied them to describe the lattice
of subvarieties of the variety of all semilattice ordered semigroups.

But, in general, very little is known about varieties of modals. In 1995 K.
Kearnes [8] proved that to each variety V of entropic modals one can associate a
commutative semiring R(V), whose structure determines many of the properties of
the variety. In particular,

Theorem 1.2 ([8]). The lattice of subvarieties of the variety V of entropic modals
is dually isomorphic to the congruence lattice ConR(V) of the semiring R(V).

Using Theorem 1.2, K. Ślusarska [17] described the lattice of subvarieties of en-
tropic modals (D, ·,+) whose groupoid reducts (D, ·) satisfy the additional identity:
x(yz) ≈ xy.

Just recently (see [13]) we described some family of fully invariant congruences
on the free semilattice ordered idempotent and entropic algebras which can partially
result in describing subvariety lattices of modals.

The main aim of this paper is to describe a structure of the subvariety lattice
of all semilattice ordered 0-algebras of a given type and study how it is related to
the subvariety lattice of all 0-algebras. M. Kuřil and L. Polák introduced in [9] the
notion of an admissible closure operator and applied it to describe the subvariety
lattice of the variety of semilattice ordered semigroups. Description proposed by
them is complicated and strictly depends on properties of semigroups. Applying
the techniques from power algebras theory we simplify their description. Moreover,
we generalize their results and obtain another type of description of the subvariety
lattice of all semilattice ordered algebras.

We start with the following easy observation.

Lemma 1.3. Let (A,Ω,+) be a semilattice ordered 0-algebra, x1, . . . , xn, y1, . . . , yn ∈
A, and let ω ∈ Ω be an 0 ̸= n-ary operation. If xi ≤ yi for each 1 ≤ i ≤ n, then

(1.3.1) ω(x1, . . . , xn) ≤ ω(y1, . . . , yn).

Note, that by Lemma 1.3 each semilattice ordered 0-algebra (A,Ω,+) is an
ordered algebra (A,Ω,≤) in the sense of [3], [1], [4].

There are two other basic properties worth mentioning.

Lemma 1.4. Let (A,Ω,+) be a semilattice ordered 0-algebra, and xij ∈ A for
1 ≤ i ≤ n, 1 ≤ j ≤ r. Then for each 0 ̸= n-ary operation ω ∈ Ω we have

ω(x11, . . . , xn1) + . . .+ ω(x1r, . . . , xnr)(1.4.1)

≤ ω(x11 + . . .+ x1r, . . . , xn1 + . . .+ xnr).

Lemma 1.5. Let (A,Ω,+) be a semilattice ordered 0-algebra and let ω ∈ Ω be an
0 ̸= n-ary operation. The algebra (A,Ω,+) satisfies for any x ∈ A the condition

(1.5.1) ω(x, . . . , x) ≤ x,
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if and only if for any x1, . . . , xn ∈ A the following holds

(1.5.2) ω(x1, . . . , xn) ≤ x1 + . . .+ xn.

In particular, if a semilattice ordered 0-algebra (A,Ω,+) is idempotent then
(1.5.2) holds.

It is easy to see that in general both (1.3.1) and (1.4.1) hold also for term
operations. The proofs go just by induction on the complexity of terms. Also, in
such a case, for any term operation t, we obtain the inequality

(1.5.3) t(x1, . . . , xi, . . . , xn) + t(x1, . . . , yi, . . . , xn) ≤ t(x1, . . . , xi + yi, . . . , xn),

that generalizes the distributive law (1.1.1).
The paper is organized as follows. In Section 2 examples of semilattice ordered

V-algebras are provided, for some given varieties V. Among the others, we mention
semilattice ordered n-semigroups, extended power algebras and modals. In Section
3 we describe the free semilattice ordered algebras (Theorem 3.4) and next we ap-
ply the result to describe the identities which are satisfied in varieties of semilattice
ordered algebras (Corollary 3.10). Section 4 is devoted to present the ”main knots”
in the subvariety lattice of semilattice ordered algebras (Theorem 4.7). In Section
5 we characterize so called V-preserved subvarieties of the variety of all semilattice
ordered algebras. In Theorem 5.9 we show that there is a correspondence between
the set of all V-preserved subvarieties and the set of some fully invariant congru-
ence relations on the extended power algebra of the V-free algebra. Theorem 5.12
contains the main result of this paper, i.e. the full description of the lattice of all
subvarieties of the variety of all semilattice ordered algebras. The last Section 6
summarizes all results in the convenient form of the algorithm.

The notation t(x1, . . . , xn) means the term t of the language of a variety V
contains no other variables than x1, . . . , xn (but not necessarily all of them). All
operations considered in the paper are supposed to be finitary. We are interested
here only in varieties of algebras, so the notation W ⊆ V means that W is a
subvariety of a variety V.

2. Examples

In this section we discuss some basic and natural examples of semilattice ordered
algebras.

Example 2.1. Semilattice ordered semigroups. An algebra (A, ·,+), where
(A, ·) is a semigroup, (A,+) is a semilattice and for any a, b, c ∈ A, a · (b + c) =
a · b + a · c and (a + b) · c = a · c + b · c is a semilattice ordered semigroup. In
particular, semirings with an idempotent additive reduct ([18], [11]), distributive
bisemilattices ([10]) and distributive lattices are semilattice ordered SG-algebras,
where SG denotes the variety of all semigroups.

Example 2.2. Semilattice ordered n-semigroups. Let 2 ≤ n ∈ N. An al-
gebra (A, f) with one n-ary operation f is called an n-semigroup, if the following
associative laws hold:

f(f(a1, . . . , an), an+1, . . . , a2n−1)

= · · · = f(a1, . . . , ai, f(ai+1, . . . , ai+n), ai+n+1, . . . , a2n−1)

= · · · = f(a1, . . . , an−1, f(an, . . . , a2n−1)),
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for all a1, . . . , a2n−1 ∈ A. A semigroup is a 2-semigroup in this sense.
An algebra (A, f,+), where (A, f) is an n-semigroup, (A,+) is a semilattice

and the equations (1.1.1) are satisfied for the operation f , is a semilattice ordered
n-semigroup.

Let SGn be the variety of all n-semigroups, (A,+) be a semilattice and End(A,+)
be the set of all endomorphisms of (A,+). For each 2 ≤ n ∈ N, we define n-ary
composition

ωn : (End(A,+))n → End(A,+), ωn(f1, . . . , fn) := fn ◦ . . . ◦ f1.
Then the algebra (End(A,+), ωn,∨), with (f1∨f2)(x) := f1(x)+f2(x), for x ∈ A,

is a semilattice ordered n-semigroup (semilattice ordered SGn-algebra). The algebra
(End(A,+), {ωn : n ∈ N},∨) is also an example of a semilattice ordered algebra.

Another example of a semilattice ordered n-semigroup can be obtained as follows.
Let A be a set and Rel(A) be the set of all binary relations on A. For each
2 ≤ n ∈ N, we define n-ary relational product

ωn : (Rel(A))
n → Rel(A), ωn(r1, . . . , rn) := rn ◦ . . . ◦ r1.

Then the algebra (Rel(A), ωn,∪), where ∪ is a set union, is a semilattice ordered
SGn-algebra and the algebra (Rel(A), {ωn : n ∈ N},∪) is a semilattice ordered
algebra.

Example 2.3. Extended power algebras. For a given set A denote by P>0A
the family of all non-empty subsets of A. For any n-ary operation ω : An → A we
define the complex operation ω : (P>0A)

n → P>0A in the following way:

(2.3.1) ω(A1, . . . , An) := {ω(a1, . . . , an) | ai ∈ Ai},
where ∅ ̸= A1, . . . , An ⊆ A. The set P>0A also carries a join semilattice structure
under the set-theoretical union ∪. B. Jónsson and A. Tarski proved in [7] that com-
plex operations distribute over the union ∪. Hence, for any algebra (A,Ω) ∈ 0, the
extended power algebra (P>0A,Ω,∪) is a semilattice ordered 0-algebra. The algebra
(P<ω>0 A,Ω,∪) of all finite non-empty subsets of A is a subalgebra of (P>0A,Ω,∪).

Example 2.4. Modals. An idempotent (in the sense that each singleton is a
subalgebra) and entropic algebra (any two of its operations commute) is called a
mode. LetM denote the variety of all modes. Amodal is an algebra (M,Ω,+), such
that (M,Ω) ∈ M, (M,+) is a (join) semilattice, and the Ω operations distribute
over +. Examples of modals include distributive lattices, dissemilattices ([10]) -
algebras (M, ·,+) with two semilattice structures (M, ·) and (M,+) in which the
operation · distributes over the operation +, and the algebra (R, I0,max) defined
on the set of real numbers, where I0 is the set of the following binary operations:
p : R× R→ R; (x, y) 7→ (1− p)x+ py, for each p ∈ (0, 1) ⊂ R.

Each modal is in fact a semilattice ordered M-algebra. Modes and modals were
introduced and investigated in detail by A. Romanowska and J.D.H. Smith ([15],
[16]).

If a modal (M,Ω,+) is entropic, then (M,Ω,+) is a mode and it is an example
of a semilattice mode. Semilattice modes were described by K. Kearnes in [8].

3. Free semilattice ordered algebras and identities

Results of M. Kuřil and L. Polák [9] show that the problem of the characterization
of semilattice ordered algebras requires the knowledge of the structure of the power
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algebra of a given algebra. In this section we will describe the free semilattice
ordered algebras using the concept of extended power algebras. Next we will apply
the result to describe the identities which are satisfied in varieties of semilattice
ordered algebras.

Let 0 be the variety of all algebras of finitary type τ : Ω → N and let V be a
subvariety of 0. Let (FV(X),Ω) be the free algebra over a set X in the variety V
and let SV denote the variety of all semilattice ordered V-algebras.

Theorem 3.1 (Universality Property for Semilattice Ordered Algebras). Let X be
an arbitrary set and (A,Ω,+) ∈ SV . Each mapping h : X → A can be extended to

a unique homomorphism h : (P<ω>0 FV(X),Ω,∪) → (A,Ω,+), such that h/X = h.

Proof. Let (A,Ω,+) ∈ SV . By assumption, (A,Ω) ∈ V. So any mapping h : X → A
may be uniquely extended to an Ω-homomorphism h : (FV(X),Ω) → (A,Ω).

Further, Ω-homomorphism h can be extended to a unique {Ω,∪}-homomorphism

h : (P<ω>0 FV(X),Ω,∪) → (A,Ω,+); h(T ) 7→
∑
t∈T

h(t),

where T is a non-empty finite subset of FV(X).

To show that h is an Ω-homomorphism, consider an n-ary operation ω ∈ Ω and
non-empty finite subsets T1, . . . , Tn ⊆ FV(X). Then

h(ω(T1, . . . , Tn)) = h({ω(t1, . . . , tn) | ti ∈ Ti})

=
∑

(t1,...,tn)∈T1×...×Tn

h(ω(t1, . . . , tn))

=
∑

(t1,...,tn)∈T1×...×Tn

ω(h(t1), . . . , h(tn))

= ω(
∑
t1∈T1

h(t1), . . . ,
∑
tn∈Tn

h(tn)) = ω(h(T1), . . . , h(Tn)).

Moreover, h is a semilattice homomorphism because

h(T1 ∪ T2) =
∑

t∈T1∪T2

h(t) =
∑
t1∈T1

h(t1) +
∑
t2∈T2

h(t2) = h(T1) + h(T2).

The uniqueness of h is obvious. �

By Theorem 3.1, for an arbitrary variety V ⊆ 0, the algebra (P<ω>0 FV(X),Ω,∪)
has the universality property for semilattice ordered algebras in SV , but in general,
the algebra itself doesn’t have to belong to the variety SV .

Example 3.2. Let V be a variety of idempotent groupoids satisfying the identities:

x · (y · z) ≈ x · y ≈ (x · y) · x and (x · y) · y ≈ x.

Consider the free groupoid (FV(X), ·) over a set X in the variety V and its two
generators x, y ∈ X. One can easily see that

({x}{x, y, xy, yx}){x, y, xy, yx} = {x, xy} ≠ {x}.

This shows that the algebra (P<ω>0 FV(X), ·,∪) does not belong to the variety SV .
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Note that the semilattice ordered algebra (P<ω>0 FV(X),Ω,∪) is generated by the
set {{x} | x ∈ X}. Hence, if (P<ω>0 FV(X),Ω,∪) ∈ SV , then it is, up to isomorphism,
the unique algebra in SV generated by a setX, with the universal mapping property.

Corollary 3.3. The semilattice ordered algebra (P<ω>0 FV(X),Ω,∪) is free over a
set X in the variety SV if and only if (P<ω>0 FV(X),Ω,∪) ∈ SV .

In particular, one obtains

Theorem 3.4. The semilattice ordered algebra (P<ω>0 F0(X),Ω,∪) is free over a set
X in the variety S0. Moreover, S0 = HSP((P<ω>0 F0(X),Ω,∪)) for an infinite set
X.

With each subvariety S ⊆ S0 of semilattice ordered 0-algebras we can associate a
least subvariety V of 0 with the property S ⊆ SV . But, for two different subvarieties
V and W of 0, the varieties SV and SW can be equal.

Example 3.5. A differential groupoid is a mode groupoid (D, ·) satisfying the
additional identity:

x(yz) ≈ xy.

Each proper non-trivial subvariety of the variety D of differential groupoids (see
[14]) is relatively based by a unique identity of the form

(. . . ((x y)y) . . .)y︸ ︷︷ ︸
i−times

=: xyi ≈ xyi+j(3.5.1)

for some i ∈ N and positive integer j. Denote such a variety by Di,i+j . Obviously,
the variety D0,1 is exactly the variety LZ of left-zero semigroups (groupoids (A, ·)
such that a · b = a for all a, b ∈ A).

Let SD denote the variety of all differential modals (modals whose mode reduct is
a differential groupoid) and let SD0,j ⊆ SD be the variety of semilattice orderedD0,j-
groupoids. We showed in [12] that for each positive integer j, one has SD0,j

= SLZ .

Example above arises the question, for which different subvarieties V1 ̸= V2 ⊆ 0,
the varieties SV1 and SV2 are different, too.

To answer this, for an arbitrary binary relation Θ on the set P<ω>0 FV(X) we will

introduce a new binary relation Θ̃ ⊆ FVX)× FV(X). For t, u ∈ FV(X)

(t, u) ∈ Θ̃ ⇔ ({t}, {u}) ∈ Θ.

Example 3.6. It is easy to see that for the least equivalence relation idP<ω>0 FV(X)

and the greatest equivalence relation T on the set P<ω>0 FV(X), we have ĩdP<ω>0 FV(X) =

idFV(X) and T̃ = FV(X)× FV(X).

Clearly, if Θ is an equivalence relation, then Θ̃ is an equivalence relation, too.
Additionally, if we consider the algebra (FV(X),Ω) and Θ is a congruence on

(P<ω>0 FV(X),Ω,∪), then also Θ̃ is a congruence relation on (FV(X),Ω).

Lemma 3.7. Let Θ be a fully invariant congruence relation on (P<ω>0 FV(X),Ω,∪).
Then the relation Θ̃ is a fully invariant congruence on (FV(X),Ω).

Proof. Let t, u ∈ FV(X). We have to prove that, if (t, u) ∈ Θ̃ then also (α(t), α(u)) ∈
Θ̃, for any endomorphism α of the algebra (FV(X),Ω).



THE LATTICE OF SUBVARIETIES OF SEMILATTICE ORDERED ALGEBRAS 7

It was shown in [2] that if α : A → B is a homomorphism of Ω-algebras (A,Ω)
and (B,Ω), so is α+ : P<ω>0 A → P<ω>0 B, where α+(S) := {α(s) | s ∈ S} for any
S ∈ P<ω>0 A. Obviously, α+ is also a homomorphism with respect to ∪. If α is
an endomorphism of the algebra (FV(X),Ω), then α+ is an endomorphism of the
algebra (P<ω>0 FV(X),Ω,∪).

Since, by assumption, Θ is a fully invariant congruence on (P<ω>0 FV(X),Ω,∪),
then in particular ({t}, {u}) ∈ Θ implies (α+({t}), α+({u})) ∈ Θ. Since α+({x}) =
{α(x)} for any x ∈ A, one obtains (α(t), α(u)) ∈ Θ̃. �

Let Confi(FV(X)) be the set of all fully invariant congruences of the algebra
(FV(X),Ω) and denote the set of all fully invariant congruences of the algebra
(P<ω>0 FV(X),Ω,∪) by Confi(P<ω>0 FV(X)).

From now through all over the paper, we assume X is an infinite set. By Lemma
3.7, each fully invariant congruence relation Θ on (P<ω>0 F0(X),Ω,∪) determines a
subvariety 0Θ̃ of 0:

0Θ̃ := HSP((F0(X)/Θ̃,Ω)).

Of course, it may happen that for Θ1 ̸= Θ2, the varieties 0Θ̃1
and 0Θ̃2

are equal.

Example 3.8. By results of R. McKenzie and A. Romanowska [10] we have that
there are at least 5 subvarieties of the variety of semilattice ordered groupoids which
are also semilattice ordered semilattices. But the variety of semilattices has only
two subvarieties.

We will show in Theorem 3.14 that for Θ1,Θ2 ∈ Confi(P<ω>0 F0(X)), different

congruences Θ̃1 ̸= Θ̃2 ∈ Confi(F0(X)) always determine different subvarieties of
the variety S0. But first we prove some auxiliary results.

Lemma 3.9. Let Θ ∈ Confi(P<ω>0 F0(X)) and t = t(x1, . . . , xk), u = u(x1, . . . , xk) ∈
F0(X) be k-ary terms. Then, the identity t ≈ u holds in (P<ω>0 F0(X)/Θ,Ω,∪) if
and only if ({t}, {u}) ∈ Θ.

Proof. Let the identity t ≈ u hold in (P<ω>0 F0(X)/Θ,Ω,∪). This means that for
any P1/Θ, . . . , Pk/Θ ∈ P<ω>0 F0(X)/Θ, we have

t(P1, . . . , Pk)/Θ = t(P1/Θ, . . . , Pk/Θ) = u(P1/Θ, . . . , Pk/Θ) = u(P1, . . . , Pk)/Θ.

The latter implies that for any subsets P1, . . . , Pk ∈ P<ω>0 F0(X), one has (t(P1, . . . , Pk),
u(P1, . . . , Pk)) ∈ Θ. In particular, for P1 = {x1}, . . . , Pk = {xk}, we obtain
({t(x1, . . . , xk)}, {u(x1, . . . , xk)}) ∈ Θ.

Now, let ({t}, {u}) ∈ Θ. Since Θ ∈ Confi(P<ω>0 F0(X)), then for any endomor-
phism α of (P<ω>0 F0(X),Ω,∪) we also have (α({t}), α({u})) ∈ Θ. In particular, for
any subsets P1, . . . , Pk ∈ P<ω>0 F0(X), we obtain (t(P1, . . . , Pk), u(P1, . . . , Pk)) ∈ Θ.
This means that the identity t ≈ u holds in (P<ω>0 F0(X)/Θ,Ω,∪). �

Corollary 3.10. Let Θ ∈ Confi(P<ω>0 F0(X)) and t, u ∈ F0(X). Then, the identity

t ≈ u holds in (P<ω>0 F0(X)/Θ,Ω) if and only if t ≈ u holds in (F0(X)/Θ̃,Ω).

Corollary 3.11. Let Θ ∈ Confi(P<ω>0 F0(X)). Then

HSP((P<ω>0 F0(X)/Θ,Ω,∪)) ⊆ S0Θ̃
.

Lemma 3.12. Let Θ,Ψ ∈ Confi(P<ω>0 F0(X)) be such that (P<ω>0 F0(X)/Ψ,Ω,∪) ∈
S0Θ̃

. Then, Θ̃ ⊆ Ψ̃.
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Proof. Let t, u ∈ F0(X) and (t, u) ∈ Θ̃. By assumption, (P<ω>0 F0(X)/Ψ,Ω) ∈ 0Θ̃.
This means the identity t ≈ u holds also in (P<ω>0 F0(X)/Ψ,Ω,∪). By Lemma 3.9

we obtain (t, u) ∈ Ψ̃ which shows Θ̃ ⊆ Ψ̃. �
Corollary 3.13. Let Θ,Ψ ∈ Confi(P<ω>0 F0(X)) be such that

S0Θ̃
= HSP((P<ω>0 F0(X)/Ψ,Ω,∪)).

Then, Ψ̃ = Θ̃.

Proof. By Lemma 3.12, we have Θ̃ ⊆ Ψ̃. Further, by Corollary 3.11 we also have
HSP((P<ω>0 F0(X)/Θ,Ω,∪)) ⊆ HSP((P<ω>0 F0(X)/Ψ,Ω,∪)). Therefore, Ψ ⊆ Θ.

Hence, Ψ̃ ⊆ Θ̃, which proves Ψ̃ = Θ̃. �
By Corollary 3.11 and Lemma 3.12 one immediately obtains

Theorem 3.14. Let Θ1,Θ2 ∈ Confi(P<ω>0 F0(X)). Then

Θ̃1 ̸= Θ̃2 ⇒ S0Θ̃1
̸= S0Θ̃2

.

Finally note that for each subvariety SV , with V the subvariety of 0, there exists
a congruence Θ ∈ Confi(P<ω>0 F0(X)) such that V = 0Θ̃. Indeed, let

SV = HSP((P<ω>0 F0(X)/Θ,Ω,∪))
and

S0Θ̃
= HSP((P<ω>0 F0(X)/Ψ,Ω,∪)),

for some Θ,Ψ ∈ Confi(P<ω>0 F0(X)). By Corollary 3.11, SV ⊆ S0Θ̃
. Further, by

Corollary 3.13 we have Θ̃ = Ψ̃. Let t, u ∈ F0(X) and let the identity t ≈ u hold in
SV . By Corollary 3.10, we have that t ≈ u holds in 0Θ̃ = 0Ψ̃. This implies that
t ≈ u holds in (P<ω>0 F0(X)/Ψ,Ω) and proves that S0Θ̃

⊆ SV .

4. ”Main knots” in the lattice of subvarieties

In previous section we have shown that for different congruences Θ̃1 ̸= Θ̃2 ∈
Confi(F0(X)), with Θ1,Θ2 ∈ Confi(P<ω>0 F0(X)), the subvarieties S0Θ̃1

and S0Θ̃2

are always different. To describe all fully invariant congruences of the algebra
(P<ω>0 F0(X),Ω,∪) which uniquely determine subvarieties of the form SV , for some
V ⊆ 0, we have to introduce the next binary relation.

Let us define a binary relation ℜ on the set Confi(P<ω>0 F0(X)) in the following
way: for Θ1,Θ2 ∈ Confi(P<ω>0 F0(X))

Θ1 ℜ Θ2 ⇔ Θ̃1 = Θ̃2.

Obviously, ℜ is an equivalence relation.

Theorem 4.1. Let Θ,Ψ ∈ Confi(P<ω>0 F0(X)) be congruences such that S0Θ̃
=

HSP((P<ω>0 F0(X)/Ψ,Ω,∪)). Then, Ψ =
∩

Φ∈Θ/ℜ Φ.

Proof. Let Θ,Ψ ∈ Confi(P<ω>0 F0(X)) and S0Θ̃
= HSP((P<ω>0 F0(X)/Ψ,Ω,∪)). By

Corollary 3.13 we have Ψ ∈ Θ/ℜ, thus obviously
∩

Φ∈Θ/ℜ Φ ⊆ Ψ.

On the other hand, for Φ ∈ Θ/ℜ, we have Φ̃ = Θ̃. Hence, by Corollary 3.11

HSP((P<ω>0 F0(X)/Φ,Ω,∪)) ⊆ S0Φ̃
= S0Θ̃

= HSP((P<ω>0 F0(X)/Ψ,Ω,∪)),
which implies Ψ ⊆

∩
Φ∈Θ/ℜ Φ, and consequently, Ψ =

∩
Φ∈Θ/ℜ Φ. �
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Corollary 4.2. Let Θ1,Θ2 ∈ Confi(P<ω>0 F0(X)). Then

Θ̃1 ⊆ Θ̃2 ⇒
∩

Φ∈Θ1/ℜ

Φ ⊆
∩

Φ∈Θ2/ℜ

Φ.

Proof. Let Θ1,Θ2,Ψ1,Ψ2 ∈ Confi(P<ω>0 F0(X)) be such that

S0Θ̃1
= HSP((P<ω>0 F0(X)/Ψ1,Ω,∪)), and

S0Θ̃2
= HSP((P<ω>0 F0(X)/Ψ2,Ω,∪)).

Since, by assumption, Θ̃1 ⊆ Θ̃2, then by Corollaries 3.10 and 3.13 we have S0Θ̃2
⊆

S0Θ̃1
.

By Theorem 4.1, this is clear that∩
Φ∈Θ1/ℜ

Φ = Ψ1 ⊆ Ψ2 =
∩

Φ∈Θ2/ℜ

Φ,

which finishes the proof. �

Lemma 4.3. Let I be a set and for each i ∈ I, let Θi be an equivalence relation
on P<ω>0 F0(X). Then ∩

i∈I

Θ̃i =
∩̃
i∈I

Θi.

Let Θ ∈ Confi(P<ω>0 F0(X)), I be a set and for each i ∈ I, let Ψi ∈ Θ/ℜ. Then
by Lemma 4.3, also

∩
i∈I

Ψi ∈ Θ/ℜ. This shows that in each class of the relation ℜ

there is the least element with respect to the set inclusion. Let

Conℜfi(P<ω>0 F0(X)) := {Θ ∈ Confi(P<ω>0 F0(X)) | Θ =
∩

Φ∈Θ/ℜ

Φ}

be the set of all such the least congruences in each ℜ-class.

Directly by Theorem 4.1 we obtain

Corollary 4.4. Let Θ ∈ Conℜfi(P<ω>0 F0(X)). Then

S0Θ̃
= HSP((P<ω>0 F0(X)/Θ,Ω,∪)).

We can say that subvarieties of the form S0Θ̃
, Θ ∈ Conℜfi(P<ω>0 F0(X)), are some

kinds of ”main knots” in the lattice of subvarieties of semilattice ordered algebras.

Obviously, if Θ1 ⊆ Θ2 then also Θ̃1 ⊆ Θ̃2. As a consequence of Corollary 4.2 if
Θ1,Θ2 ∈ Conℜ

fi(P<ω>0 F0(X)), then the converse is also true.

Corollary 4.5. Let Θ1,Θ2 ∈ Conℜfi(P<ω>0 F0(X)). Then

Θ1 ⊆ Θ2 ⇔ Θ̃1 ⊆ Θ̃2.

Let Θ1 ∨Θ2 denote the least upper bound of two congruence relations Θ1,Θ2 ∈
Confi(P<ω>0 F0(X)) with respect to the set inclusion. Note that in general Θ̃1∨Θ̃2 (
Θ̃1 ∨Θ2.

Corollary 4.5 allows us to formulate the following result.
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Lemma 4.6. The ordered set (Conℜ
fi(P<ω>0 F0(X)),⊆) is a complete lattice. Let I

be a set and for each i ∈ I, let Θi ∈ Conℜfi(P<ω>0 F0(X)). Then, the relation∩
Φ∈(

∨
i∈I

Θi)/ℜ

Φ

is the least upper bound of {Θi}i∈I , and the congruence∩
Φ∈(

∩
i∈I

Θi)/ℜ

Φ

is the greatest lower bound of {Θi}i∈I .

Let us introduce the following notation:

Lℜ(0) := {0Θ̃ ⊆ 0 | Θ ∈ Conℜ
fi(P<ω>0 F0(X))}.

Clearly, the set Lℜ(0) is partially ordered by the set inclusion. Moreover, for
Θ1,Θ2 ∈ Conℜ

fi(P<ω>0 F0(X))

0Θ̃1
⊆ 0Θ̃2

⇔ Θ̃2 ⊆ Θ̃1 ⇔ Θ2 ⊆ Θ1.

Directly from Lemma 4.6 we obtain the following

Theorem 4.7. The ordered set (Lℜ(0),⊆) is a complete lattice dually isomorphic
to the lattice (Conℜfi(P<ω>0 F0(X)),⊆). For any two subvarieties 0Θ̃1

,0Θ̃2
∈ Lℜ(0),

the variety 0
Θ̃1∩Θ2

is the least upper bound of 0Θ̃1
and 0Θ̃2

, and the variety 0
Θ̃1∨Θ2

is the greatest lower bound of 0Θ̃1
and 0Θ̃2

.

By Lemma 4.3 it follows that the variety 0
Θ̃1∩Θ2

is equal to the variety 0Θ̃1
∨

0Θ̃2
, the least upper bound of 0Θ̃1

and 0Θ̃2
with respect to the set inclusion. But

the variety 0
Θ̃1∨Θ2

has not to be equal to the variety 0Θ̃1
∩ 0Θ̃2

.

By Theorem 3.14 we immediately obtain

Corollary 4.8. The lattice ({S0Θ̃
| Θ ∈ Conℜ

fi(P<ω>0 F0(X))},⊆) of all ”main

knots” subvarieties is isomorphic to the lattice (Lℜ(0),⊆). For any two varieties
S0Θ̃1

and S0Θ̃2
, the variety S0Θ̃1

∨ 0Θ̃2
is their least upper bound and the variety

S0
Θ̃1∨Θ2

is their greatest lower bound (see Figure 1).

rS0
Θ̃1∨Θ2

rS0Θ̃1
r S0Θ̃2

rS0Θ̃1
∨ 0Θ̃2

A
A
A

�
�
�

�
�
�

A
A
A

Figure 1. The lattice ({S0Θ̃
| Θ ∈ Conℜfi(P<ω>0 F0(X))},⊆)
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5. The lattice of subvarieties

By Lemma 4.3 one obtains the following characterization of the ordered set
(Θ/ℜ,⊆) for Θ ∈ Conℜfi(P<ω>0 F0(X)).

Lemma 5.1. Let Θ ∈ Conℜ
fi(P<ω>0 F0(X)), I be a set and for each i ∈ I, Ψi ∈ Θ/ℜ.

Then (Θ/ℜ,⊆) is a complete meet-semilattice with the relation
∩
i∈I

Ψi as the greatest

lower bound of {Ψi}i∈I .
Let Ψ ∈ Θ/ℜ. Note that by Corollary 3.10 the algebras (P<ω>0 F0(X)/Ψ,Ω) and

(F0(X)/Θ̃,Ω) satisfy exactly the same identities. This shows that the variety

S = HSP((P<ω>0 F0(X)/Ψ,Ω,∪))
is a subvariety of S0Θ̃

and is not included in SW for any proper subvariety W ⊂ 0Θ̃.
This justifies the introduction of the following definition.

Definition 5.2. Let V be a subvariety of 0 and S be a non-trivial subvariety of
SV . The variety S is V-preserved, if S * SW for any proper subvariety W of V.
Lemma 5.3. Let Θ,Ψ ∈ Confi(P<ω>0 F0(X)). A non-trivial subvariety

S = HSP((P<ω>0 F0(X)/Ψ,Ω,∪)) ⊆ S0Θ̃

is 0Θ̃-preserved if and only if Ψ̃ = Θ̃.

Proof. By Lemma 3.12, for each subvariety S = HSP((P<ω>0 F0(X)/Ψ,Ω,∪)) ⊆
S0Θ̃

, one has Θ̃ ⊆ Ψ̃. Now let S be 0Θ̃-preserved subvariety of S0Θ̃
. By definition,

S is not included in any variety SW for a proper subvariety W ⊂ 0Θ̃. This means
that the algebra (P<ω>0 F0(X)/Ψ,Ω) does not belong to any proper subvariety of

0Θ̃. Then, by Corollary 3.10, Ψ̃ = Θ̃.

Finally, let Ψ̃ = Θ̃. Hence, by Corollary 3.10 the algebras (P<ω>0 F0(X)/Ψ,Ω)

and (F0(X)/Θ̃,Ω) satisfy exactly the same identities, which shows that S is 0Θ̃-
preserved. �

Let Θ ∈ Conℜfi(P<ω>0 F0(X)). By Lemma 5.3 with each congruence Ψ ∈ Θ/ℜ
one can associate the 0Θ̃-preserved subvariety HSP((P<ω>0 F0(X)/Ψ,Ω,∪)) of S0Θ̃

.
This mapping is the restriction of the dual isomorphism we have between lattice
(Confi(P<ω>0 F0(X)),⊆) and the lattice of all subvarieties of S0, to the set Θ/ℜ.
By Lemmas 4.3, 5.1 and 5.3 we immediately have

Theorem 5.4. Let Θ ∈ Conℜfi(P<ω>0 F0(X)). The semilattice of all 0Θ̃-preserved

subvarieties of S0Θ̃
is dually isomorphic to the complete semilattice (Θ/ℜ,⊆). For

any 0Θ̃-preserved subvarieties {Si}i∈I of S0Θ̃
, the variety

∨
i∈I

Si is their least upper

bound.

In Theorem 5.9 we will show that there is also a correspondence between the set
of 0Θ̃-preserved subvarieties of S0Θ̃

and the set of some fully invariant congruence

relations on the algebra (P<ω>0 (F0(X)/Θ̃),Ω,∪). First we will prove some auxiliary
technical results.

We introduce the following notation. For a set Q ∈ P<ω>0 F0(X) and a congruence
Ψ ∈ Confi(P<ω>0 F0(X)),

QΨ̃ := {q(x1/Ψ̃, . . . , xn/Ψ̃) | q ∈ Q} = {q(x1, . . . , xn)/Ψ̃ | q ∈ Q} ∈ P<ω>0 (F0(X)/Ψ̃).
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Now, we define a relation δΨ ⊆ P<ω>0 (F0(X)/Ψ̃)×P<ω>0 (F0(X)/Ψ̃) in the following
way:

(QΨ̃, RΨ̃) ∈ δΨ ⇔ (Q,R) ∈ Ψ

for Q,R ∈ P<ω>0 F0(X).

Lemma 5.5. Let Ψ ∈ Confi(P<ω>0 F0(X)). The relation δΨ is a fully invari-

ant congruence relation on (P<ω>0 (F0(X)/Ψ̃),Ω,∪) such that δ̃Ψ = idF0(X)/Ψ̃ and

(P<ω>0 (F0(X)/Ψ̃)/δΨ,Ω) ∈ 0Ψ̃.

Proof. Let Ψ ∈ Confi(P<ω>0 F0(X)). First note that the definition of the relation δΨ
is correct. Let x1, . . . , xk, y1, . . . , ym ∈ F0(X) and (x1, t1), . . . , (xk, tk), (y1, u1), . . . ,

(ym, um) ∈ Ψ̃. Then ({x1}, {t1}), . . . , ({xk}, {tk}), ({y1}, {u1}), . . . , ({ym}, {um}) ∈
Ψ. Since Ψ is a congruence on (P<ω>0 F0(X),Ω,∪) we obtain

({x1, . . . , xk}, {t1, . . . , tk}), ({y1, . . . , ym}, {u1, . . . , um}) ∈ Ψ.

Clearly, the relation δΨ is a congruence on (P<ω>0 (F0(X)/Ψ̃),Ω,∪). We will show

that δΨ is fully invariant. Let QΨ̃, RΨ̃ ∈ P<ω>0 (F0(X)/Ψ̃). We have to prove that

for every endomorphism λ of (P<ω>0 (F0(X)/Ψ̃),Ω,∪), if (QΨ̃, RΨ̃) ∈ δΨ, then also

(λ(QΨ̃), λ(RΨ̃)) ∈ δΨ.

For each xi/Ψ̃ ∈ X/Ψ̃ let us choose a subset P Ψ̃
i ∈ P<ω>0 (F0(X)/Ψ̃). The map-

ping λ : P<ω>0 (F0(X)/Ψ̃) → P<ω>0 (F0(X)/Ψ̃)

(5.5.1) λ(QΨ̃) = λ({q(x1/Ψ̃, . . . , xn/Ψ̃) | q ∈ Q}) :=
∪
q∈Q

q(P Ψ̃
1 , . . . , P

Ψ̃
n )

is an endomorphism of the algebra (P<ω>0 (F0(X)/Ψ̃),Ω,∪).
Note that the algebra (F0(X)/Ψ̃,Ω) is generated by the set {x/Ψ̃ | x ∈ X}.

It follows then that the algebra (P<ω>0 (F0(X)/Ψ̃),Ω,∪) is generated by the set

{{x/Ψ̃} | x ∈ X} and for any {xi/Ψ̃}, we have λ({xi/Ψ̃}) = P Ψ̃
i . Because each

homomorphism is uniquely defined on generators of an algebra then we obtain that

each endomorphism λ of (P<ω>0 (F0(X)/Ψ̃),Ω,∪) is of the form (5.5.1).

Recall we consider here only finite subsets of F0(X). This assumption is crucial
in what follows. Let Λ be an endomorphism of (P<ω>0 F0(X),Ω,∪). By above
discussion, Λ is of the form (5.5.1) for subsets P1, . . . , Pn ∈ P<ω>0 F0(X). Let Q,R ∈
P<ω>0 F0(X). Hence we have

(QΨ̃, RΨ̃) ∈ δΨ ⇔ (Q,R) ∈ Ψ.

Therefore, because Ψ is, by assumption, a fully invariant congruence on (P<ω>0 F0(X),Ω,∪),
for the endomorphism Λ we obtain

(Λ(Q),Λ(R)) ∈ Ψ ⇒ (
∪
q∈Q

q(P1, . . . , Pn),
∪
r∈R

r(P1, . . . , Pn)) ∈ Ψ ⇒

((
∪
q∈Q

q(P1, . . . , Pn))
Ψ̃, (

∪
r∈R

r(P1, . . . , Pn))
Ψ̃) ∈ δΨ ⇒

(
∪
q∈Q

q(P Ψ̃
1 , . . . , P

Ψ̃
n ),

∪
r∈R

r(P Ψ̃
1 , . . . , P

Ψ̃
n )) ∈ δΨ.
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This shows that for any endomorphism Υ of the algebra (P<ω>0 (F0(X)/Ψ̃),Ω,∪),
(Υ(QΨ̃),Υ(RΨ̃)) ∈ δΨ and proves that the congruence δΨ is fully invariant.

Now we will prove that (P<ω>0 (F0(X)/Ψ̃)/δΨ,Ω) ∈ 0Ψ̃. By Corollary 3.11,
the variety HSP(P<ω>0 F0(X)/Ψ,Ω,∪) is included in S0Ψ̃

, which means that the

algebra (P<ω>0 F0(X)/Ψ,Ω) belongs to the variety 0Ψ̃. Hence, for any identity
t(x1, . . . , xm) = t ≈ u = u(x1, . . . , xm) which holds in 0Ψ̃ and arbitraryQ1/Ψ, . . . , Qm/Ψ ∈
P<ω>0 F0(X)/Ψ we have

t(Q1, . . . , Qm)/Ψ = t(Q1/Ψ, . . . , Qm/Ψ) =

u(Q1/Ψ, . . . , Qm/Ψ) = u(Q1, . . . , Qm)/Ψ.

This is equivalent to

(t(Q1, . . . , Qm), u(Q1, . . . , Qm)) ∈ Ψ.

It follows then

(t(Q1, . . . , Qm)Ψ̃, u(Q1, . . . , Qm)Ψ̃) ∈ δΨ ⇒

(t(QΨ̃
1 , . . . , Q

Ψ̃
m), u(QΨ̃

1 , . . . , Q
Ψ̃
m)) ∈ δΨ ⇔

t(QΨ̃
1 , . . . , Q

Ψ̃
m)/δΨ = u(QΨ̃

1 , . . . , Q
Ψ̃
m)/δΨ ⇔

t(QΨ̃
1 /δΨ, . . . , Q

Ψ̃
m/δΨ) = u(QΨ̃

1 /δΨ, . . . , Q
Ψ̃
m/δΨ).

This proves that the identity t ≈ u holds in the algebra (P<ω>0 (F0(X)/Ψ̃)/δΨ,Ω).

Finally, for t, u ∈ F0(X)

(t/Ψ̃, u/Ψ̃) ∈ δ̃Ψ ⇔ ({t/Ψ̃}, {u/Ψ̃}) ∈ δΨ ⇔ ({t}, {u}) ∈ Ψ ⇔

(t, u) ∈ Ψ̃ ⇔ t/Ψ̃ = u/Ψ̃ ⇔ (t/Ψ̃, u/Ψ̃) ∈ idF0(X)/Ψ̃.

�
Let Θ ∈ Conℜfi(P<ω>0 F0(X)). Denote by Conidfi(P<ω>0 F0Θ̃

(X)) the following set:

{ψ ∈ Confi(P<ω>0 F0Θ̃
(X)) | ψ̃ = idF0

Θ̃
(X) and (P<ω>0 F0Θ̃

(X)/ψ,Ω) ∈ 0Θ̃}.

Now, for ψ ∈ Conidfi(P<ω>0 F0Θ̃
(X)), define a relation ∆ψ ⊆ P<ω>0 F0(X)×P<ω>0 F0(X)

in the following way:

(T,U) ∈ ∆ψ ⇔ (T Θ̃, U Θ̃) ∈ ψ.

Again, by similar straightforward calculations as in the proof of Lemma 5.5 one
can obtain the following.

Lemma 5.6. Let Θ ∈ Conℜ
fi(P<ω>0 F0(X)) and ψ ∈ Conidfi(P<ω>0 F0Θ̃

(X)). Then, the

relation ∆ψ is a fully invariant congruence on (P<ω>0 F0(X),Ω,∪) with the properties

∆̃ψ = Θ̃ and HSP((P<ω>0 F0(X)/∆ψ,Ω)) ⊆ 0Θ̃.

Lemma 5.7. Let Θ ∈ Conℜfi(P<ω>0 F0(X)).

If Ψ ∈ Θ/ℜ then
Ψ = ∆δΨ .

For a congruence ψ ∈ Conidfi(P<ω>0 F0Θ̃
(X)) one has

ψ = δ∆ψ .
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Lemmas 5.5 and 5.7 immediately imply

Corollary 5.8. Let Θ ∈ Conℜfi(P<ω>0 F0(X)). The map Ψ 7→ δΨ is a complete

semilattice homomorphism between (Θ/ℜ,⊆) and (Conidfi(P<ω>0 F0Θ̃
(X)),⊆).

By Corollary 5.8 and Theorem 5.4 we obtain

Theorem 5.9. Let Θ ∈ Conℜfi(P<ω>0 F0(X)). The complete semilattice of all
0Θ̃-preserved subvarieties of S0Θ̃

is dually isomorphic to the complete semilattice

(Conidfi(P<ω>0 F0Θ̃
(X)),⊆).

Before we formulate Theorem 5.12, the main result of the paper, let us summarize

what we have already known. For each Ψ ∈ Confi(P<ω>0 F0(X)) such that Ψ̃ = Θ̃,
the subvariety S = HSP((P<ω>0 F0(X)/Ψ,Ω,∪)) of S0 is an 0Θ̃-preserved subvariety
of S0Θ̃

⊆ S0 according to Lemma 5.3. Therefore, to find any subvariety S of S0

we should proceed as follows: first find the proper ”main knot” and then choose
one of its subvarieties.

By Theorem 3.14, Lemma 5.3, and Theorem 5.9 one can uniquely associate with

the variety S two congruence relations: Θ ∈ Conℜfi(P<ω>0 F0(X)) such that Ψ̃ = Θ̃

(for the ”main knot” S0Θ̃
), and then δΨ ∈ Conidfi(P<ω>0 F0Θ̃

(X)) (for the chosen

0Θ̃-preserved subvariety).

On the other hand, any pair of congruences: Θ ∈ Conℜfi(P<ω>0 F0(X)) and α ∈
Conidfi(P<ω>0 F0Θ̃

(X)) describes a subvariety S = HSP((P<ω>0 F0(X)/Ψ,Ω,∪)) of S0

such that Ψ̃ = Θ̃ and α = δΨ.
Consider the set

Conidfi(0) :=
∪

Θ∈Conℜ
fi(P

<ω
>0 F0(X))

Conidfi(P<ω>0 F0Θ̃
(X)).

One has

α ∈ Conidfi(0) ⇔ ∃Θ ∈ Conℜfi(P<ω>0 F0(X)) such that α ∈ Conidfi(P<ω>0 F0Θ̃
(X)).

To stress the fact that the congruence α depends on Θ we denote it by αΘ̃. Now,

define on the set Conidfi(0) a binary relation ≼ in the following way: for αΘ̃ ∈
Conidfi(P<ω>0 F0Θ̃

(X)) and βΨ̃ ∈ Conidfi(P<ω>0 F0Ψ̃
(X)), with Θ,Ψ ∈ Conℜfi(P<ω>0 F0(X))

αΘ̃ ≼ βΨ̃ ⇔ Θ̃ ⊆ Ψ̃ and ∀(a1, . . . , ak, b1, . . . , bm ∈ F0(X))

({a1/Θ̃, . . . , ak/Θ̃}, {b1/Θ̃, . . . , bm/Θ̃}) ∈ αΘ̃ ⇒

({a1/Ψ̃, . . . , ak/Ψ̃}, {b1/Ψ̃, . . . , bm/Ψ̃}) ∈ βΨ̃.

Clearly, the relation ≼ is a partial order.

Remark 5.10. Let Θ,Λ ∈ Conℜfi(P<ω>0 F0(X)) and let Ψ,Γ ∈ Confi(P<ω>0 F0(X))

be such that Ψ̃ = Θ̃ and Γ̃ = Λ̃. Then for the congruences δΨ ∈ Conidfi(P<ω>0 F0Θ̃
(X)),

δΓ ∈ Conidfi(P<ω>0 F0Λ̃
(X)) one has

δΨ ≼ δΓ ⇔ Ψ ⊆ Γ.



THE LATTICE OF SUBVARIETIES OF SEMILATTICE ORDERED ALGEBRAS 15

Theorem 5.11. The ordered set (Conidfi(0),≼) is a complete lattice.

Let I be a set and for each i ∈ I, αΘ̃i ∈ Conidfi(P<ω>0 F0Θ̃i
(X)). The binary relations

δ ∩
i∈I

∆
αΘ̃i

⊆ P<ω>0 F0 ∩
i∈I

Θ̃i
(X)× P<ω>0 F0 ∩

i∈I
Θ̃i
(X), and

δ ∨
i∈I

∆
αΘ̃i

⊆ P<ω>0 F0Υ̃
(X)×P<ω>0 F0Υ̃

(X), where Υ :=
∩

Φ∈(
∨
i∈I

∆
αΘ̃i

)/ℜ

Φ,

are, respectively, the greatest lower bound and the least upper bound of {αΘ̃i}i∈I
with respect to ≼.

Proof. Let Θ,Φ ∈ Conℜfi(P<ω>0 F0(X)). By Lemma 5.6, for any αΘ̃ ∈ Conidfi(0) we

have ∆̃αΘ̃ = Θ̃. Then by Lemma 4.3, one obtains∩̃
i∈I

∆
αΘ̃i

=
∩
i∈I

∆̃
αΘ̃i

=
∩
i∈I

Θ̃i =
∩̃
i∈I

Θi and
∨̃
i∈I

∆
αΘ̃i

= Υ̃.

Hence, by Lemmas 5.5 and 5.6, the congruences δ ∩
i∈I

∆
αΘ̃i

and δ ∨
i∈I

∆
αΘ̃i

belong

to the set Conidfi(0).

Obviously, for each i ∈ I,
∩
i∈I

Θ̃i ⊆ Θ̃i. Moreover, for t1, . . . , tk, u1, . . . , um ∈ F0(X)

({t1/ ∩
i∈I

Θ̃i
, . . . , tk/ ∩

i∈I
Θ̃i
}, {u1/ ∩

i∈I
Θ̃i
, . . . , um/ ∩

i∈I
Θ̃i
}) ∈ δ ∩

i∈I
∆
αΘ̃i

⇔

∀(i ∈ I) ({t1/Θ̃i , . . . , tk/Θ̃i}, {u1/Θ̃i , . . . , um/Θ̃i}) ∈ αΘ̃i .

This implies that for each i ∈ I,

δ ∩
i∈I

∆
αΘ̃i

≼ αΘ̃i .

Now let γΦ̃ ∈ Conidfi(P<ω>0 F0Φ̃
(X)) and for each i ∈ I, γΦ̃ ≼ αΘ̃i . Then, for each

i ∈ I, Φ̃ ⊆ Θ̃i, and consequently, Φ̃ ⊆
∩
i∈I

Θ̃i. Further, for any t1, . . . , tk, u1, . . . , um ∈

F0(X)

({t1/Φ̃, . . . , tk/Φ̃}, {u1/Φ̃, . . . , um/Φ̃}) ∈ γΦ̃ ⇒

∀(i ∈ I) ({t1/Θ̃i , . . . , tk/Θ̃i}, {u1/Θ̃i , . . . , um/Θ̃i}) ∈ αΘ̃i ⇒
∀(i ∈ I) ({t1, . . . , tk}, {u1, . . . , um}) ∈ ∆

αΘ̃i
⇒

({t1, . . . , tk}, {u1, . . . , um}) ∈
∩
i∈I

∆
αΘ̃i

⇔

({t1/ ∩
i∈I

Θ̃i
, . . . , tk/ ∩

i∈I
Θ̃i
}, {u1/ ∩

i∈I
Θ̃i
, . . . , um/ ∩

i∈I
Θ̃i
}) ∈ δ ∩

i∈I
∆
αΘ̃i

.

This shows the relation δ ∩
i∈I

∆
αΘ̃i

is the greatest lower bound of {αΘ̃i}i∈I with

respect to ≼.
Now note that for each i ∈ I,

∆̃
αΘ̃i

= Θ̃i ⊆
∨
i∈I

Θ̃i =
∨
i∈I

∆̃
αΘ̃i

⊆
∨̃
i∈I

∆
αΘ̃i

= Υ̃



16 A. PILITOWSKA1 AND A. ZAMOJSKA-DZIENIO2

and for t1, . . . , tk, u1, . . . , um ∈ F0(X) we have

({t1/Θ̃i , . . . , tk/Θ̃i}, {u1/Θ̃i , . . . , um/Θ̃i}) ∈ αΘ̃i ⇔
({t1, . . . , tk}, {u1, . . . , um}) ∈ ∆

αΘ̃i
⇒

({t1, . . . , tk}, {u1, . . . , um}) ∈
∨
i∈I

∆
αΘ̃i

⇒

({t1/Υ̃, . . . , tk/Υ̃}, {u1/Υ̃, . . . , um/Υ̃}) ∈ δ ∨
i∈I

∆
αΘ̃i

.

Thus, for each i ∈ I, αΘ̃i ≼ δ ∨
i∈I

∆
αΘ̃i

.

Finally, let γΦ̃ ∈ Conidfi(P<ω>0 F0Φ̃
(X)) and for each i ∈ I, αΘ̃i ≼ γΦ̃. Then, for

each i ∈ I, Θ̃i ⊆ Φ̃ and for t1, . . . , tk, u1, . . . , um ∈ F0(X)

({t1, . . . , tk}, {u1, . . . , um}) ∈ ∆
αΘ̃i

⇔

({t1/Θ̃i , . . . , tk/Θ̃i}, {u1/Θ̃i , . . . , um/Θ̃i}) ∈ αΘ̃i ⇒

({t1/Φ̃, . . . , tk/Φ̃}, {u1/Φ̃, . . . , um/Φ̃}) ∈ γΦ̃ ⇔
({t1, . . . , tk}, {u1, . . . , um}) ∈ ∆γΦ̃ .

Then, for each i ∈ I, ∆
αΘ̃i

⊆ ∆γΦ̃ . Hence
∨
i∈I

∆
αΘ̃i

⊆ ∆γΦ̃ , which implies

Υ̃ =
∨̃
i∈I

∆
αΘ̃i

⊆ ∆̃γΦ̃ = Φ̃.

Moreover, by Lemma 5.7 we have

({t1/Υ̃, . . . , tk/Υ̃}, {u1/Υ̃, . . . , um/Υ̃}) ∈ δ ∨
i∈I

∆
αΘ̃i

⇔

({t1, . . . , tk}, {u1, . . . , um}) ∈
∨
i∈I

∆
αΘ̃i

⇒

({t1, . . . , tk}, {u1, . . . , um}) ∈ ∆γΦ̃ ⇔

({t1/Φ̃, . . . , tk/Φ̃}, {u1/Φ̃, . . . , um/Φ̃}) ∈ δ∆
γΦ̃

= γΦ̃,

which means the relation δ ∨
i∈I

∆
αΘ̃i

is the least upper bound of {αΘ̃i}i∈I , and com-

pletes the proof. �

By Theorem 5.11 we obtain a full description of the lattice of all subvarieties of
the variety S0.

Let L(S0) denote the set of all subvarieties of the variety S0. As we have already
noticed each subvariety S of S0 may be uniquely described by two congruences:

Θ ∈ Conℜfi(P<ω>0 F0(X)) and αΘ̃ ∈ Conidfi(P<ω>0 F0Θ̃
(X)). Hence, we can denote

each subvariety in the set L(S0) by SαΘ̃

0Θ̃
. Thus, one has

L(S0) = {Sα
Θ̃

0Θ̃
| Θ ∈ Conℜ

fi(P<ω>0 F0(X)), αΘ̃ ∈ Conidfi(P<ω>0 F0Θ̃
(X))}.

Theorem 5.12. The lattice (L(S0),⊆) of all subvarieties of the variety S0 is
dually isomorphic to the lattice (Conidfi(0),≼).
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For any SαΘ̃

0Θ̃
,Sβ

Ψ̃

0Ψ̃
∈ L(S0) we have:

Sα
Θ̃

0Θ̃
∨ Sβ

Ψ̃

0Ψ̃
= S

δ∆
αΘ̃

∩∆
βΨ̃

0
Θ̃∩Ψ

and

Sα
Θ̃

0Θ̃
∩ Sβ

Ψ̃

0Ψ̃
= S

δ∆
αΘ̃

∨∆
βΨ̃

0Υ̃
,

where Υ :=
∩

Φ∈(∆
αΘ̃∨∆

βΨ̃
)/ℜ

Φ, (see Figure 2).

r
S
δ∆
αΘ̃

∨∆
βΨ̃

0Υ̃

rSαΘ̃

0Θ̃

r Sβ
Ψ̃

0Ψ̃

rS
δ∆
αΘ̃

∩∆
βΨ̃

0
Θ̃∩Ψ

A
A
A

�
�
�

�
�
�

A
A
A

Figure 2. The lattice (L(S0),⊆)

Theorem 5.12 allows to describe the subvariety lattice L(S0) without knowl-
edge of the set Confi(P<ω>0 F0(X)). But, if we know the latter, each congru-

ence αΘ̃ ∈ Conidfi(P<ω>0 F0Θ̃
(X)) may be replaced by the congruence δΨ, for Ψ ∈

Confi(P<ω>0 F0(X)) such that Ψ̃ = Θ̃. Then, Theorem 5.12 may be considerably
simplified.

Corollary 5.13. For any SδΨ0Θ̃
,SδΦ0Γ̃

∈ L(S0) we have:

SδΨ0Θ̃
∨ SδΦ0Γ̃

= SδΨ∩Φ

0
Θ̃∩Γ

and SδΨ0Θ̃
∩ SδΦ0Γ̃

= SδΨ∨Φ

0 ∩
Υ̃=Ψ̃∨Φ

Υ̃
.

6. The lattice L(S0) - practical computations

Now, for a subvariety V ⊆ 0, we will present how to find the lattice (L(SV),⊆)
of all subvarieties of the variety SV , knowing the lattice (L(V),⊆). Of course, any
lattice (L(SV),⊆) is a sublattice of the lattice (L(S0),⊆).

On the other hand, Example 3.5 shows that not for each subvariety V ⊆ 0, the
variety SV is uniquely defined. Let us consider two sets

ConV := {ψ ∈ Confi(P<ω>0 FV(X)) | ψ̃ = idFV(X) and (P<ω>0 FV(X)/ψ,Ω) ∈ V} and

OV := {W ⊆ V | ConW ̸= ∅}.

By Lemma 5.6, if ConV ̸= ∅ then SV is not equal to SW for any proper subvariety
W ⊂ V. Therefore, to find the lattice (L(SV),⊆), Theorems 5.9, 5.11 and 5.12 lead
us to the procedure described on Figure 3.

By Theorems 5.11 and 5.12, the algebra (
∪

W∈OV

ConW ,⊓,⊔), with

αW1 ⊓ βW2 := δ∆
αW1

∩∆
βW2

∈ ConW1∨W2 ,
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Take a subvariety V ⊆ 0

?

Create the set ConV

��	 @@R
ConV ̸= ∅ConV = ∅

?

?

There is a subvariety W  V such that SW = SV

SV is the ”main knot” in the lattice (L(S0),⊆)

?

Create the set OV

?

Choose subvarieties W1,W2 ∈ OV

?

Take αW1 ∈ ConW1 and βW2 ∈ ConW2 ;

Calculate the congruences: ∆αW1 , ∆βW2 , ∆αW1 ∩∆βW2 ,

∆αW1 ∨∆βW2 , δ∆
αW1

∩∆
βW2

, δ∆
αW1

∨∆
βW2

?
Calculate the set

∪
W∈OV

ConW

Figure 3. Algorithm of finding the lattice L(SV)

and

αW1 ⊔ βW2 := δ∆
αW1∨∆

βW2
∈ ConU ,

where U = HSP((P<ω>0 (FV(X)/ ˜∆αW1 ∨∆βW2 ),Ω,∪)), is a lattice dually isomorphic
to the complete lattice (L(SV),⊆) of all subvarieties of the variety SV .

Example 6.1. Let 0 be the variety of all binary algebras (A, ·) and LZ ⊆ 0 be the
subvariety of left-zero semigroups. It is known that LZ-free algebra (FLZ(X), ·)
on a set X is isomorphic to the left-zero groupoid (X, ·). It is also easy to notice
(P<ω>0 X, ·) ∈ LZ.
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By Corollary 3.3, for any V ⊆ 0, the semilattice ordered algebra (P<ω>0 FV(X), ·,∪)
is free over a set X in the variety SV if and only if (P<ω>0 FV(X), ·,∪) ∈ SV . Then
the algebra (P<ω>0 X, ·,∪) is free in the variety SLZ of all semilattice ordered LZ-
algebras. Moreover, the algebra (P<ω>0 X, ·,∪) is generated by the set {{x} | x ∈ X}.

Let Q = {q1, . . . , qk} ⊆ X and α be an endomorphism of (P<ω>0 X, ·,∪). Be-
cause each homomorphism is uniquely defined on generators of an algebra, α(Q) =
α({q1}) ∪ . . . ∪ α({qk}) might be any finite subset of X. This implies ConLZ =
{idP<ω>0 X

} and shows there are only two subvarieties of the variety SLZ : SLZ itself

and trivial one.

Example 6.2. Let 0 be the variety of all binary algebras (A, ·), SG be the variety
of all semigroups and SL denote the variety of all semilattices.

By results of G. Grätzer and H. Lakser ([6, Prop. 1]), the algebra (P<ω>0 FSL(X), ·)
is a commutative semigroup, but it is not idempotent. Hence, the algebra (P<ω>0 FSL(X), ·)
does not belong to the variety SSL, and consequently by Corollary 3.3, it is not
free in SSL.

Let us consider the so-called SSL-replica congruence of (P<ω>0 FSL(X), ·,∪):

ΦSSL(X) :=
∩

{ϕ ∈ Con(P<ω>0 FSL(X), ·,∪) | (P<ω>0 FSL(X)/ϕ, ·,∪) ∈ SSL}.

The algebra (P<ω>0 FSL(X)/ΦSSL(X), ·,∪) is called the SSL-replica of (P<ω>0 FSL(X), ·,∪).
Obviously, each semilattice is a mode, then by results of [12], the SSL-replica of

the algebra (P<ω>0 FSL(X), ·,∪) is free over a set X in the variety SSL.
The free semilattice (FSL(X), ·) over a setX is isomorphic to the algebra (P<ω>0 X,∪).

We proved in [13] that SSL-replica congruence of (P<ω>0 (P<ω>0 X),∪,∪) is defined in
the following way: for Q,R ∈ P<ω>0 (P<ω>0 X)

Q ΦSSL(X) R ⇔ ⟨Q⟩ = ⟨R⟩,
where ⟨S⟩ denotes the subalgebra of (P<ω>0 X,∪) generated by S.

This shows the free algebra over a set X in the variety SSL is isomorphic to
the algebra (S(P<ω>0 X),+) of all non empty, finitely generated subalgebras of the
algebra (P<ω>0 X,∪), with S1 + S2 := ⟨S1 ∪ S2⟩.

By results of M. Kuřil and L. Polák ([9]), there are three more non-trivial fully
invariant congruences of (P<ω>0 (P<ω>0 X),∪,∪) greater than ΦSSL(X), which belong
to the set ConSL. They can be described as follows: for Q = {q1, . . . , qk}, R =
{r1, . . . , rm} ∈ P<ω>0 (P<ω>0 X)

Q Φ1 R ⇔
∀(q ∈ Q) ∃(r ∈ R) r ⊆ q ⊆ r1 ∪ . . . ∪ rm and ∀(r ∈ R) ∃(q ∈ Q) q ⊆ r ⊆ q1 ∪ . . . ∪ qk,
Q Φ2 R ⇔
∀(q ∈ Q) q ⊆ r1 ∪ . . . ∪ rm and ∀(r ∈ R) r ⊆ q1 ∪ . . . ∪ qk,
Q Φ3 R ⇔
∀(q ∈ Q) ∃(r ∈ R) r ⊆ q and ∀(r ∈ R) ∃(q ∈ Q) q ⊆ r.

This confirmed previous results of R. McKenzie and A. Romanowska (see [10])
that there are exactly five subvarieties of the variety SSL.
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