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Abstract. We describe the semiring associated with the variety V(R)
generated by some ternary algebras of submodules of R-modules. We show
that this semiring is isomorphic to the semiring of finitely generated ideals
of the ring R. We also describe the lattice of all subvarieties of the variety
V(Zn).

Algebras considered in this paper are semilattice modes. A mode is an
idempotent algebra, in the sense that each singleton is a subalgebra, and an
entropic algebra, i.e. each operation as a mapping from a direct power of the
algebra into the algebra is a homomorphism. A mode is called a semilattice
mode if some binary term interprets as a semilattice operation.

Let R be a commutative ring with unity 1. We can describe affine R-
spaces as certain ternary reducts (E,R) of R-modules, and consider algebras
(ESA,R) of subalgebras of algebras (E, R). For each R-module, its submod-
ules form a subalgebra (ESM, R) of (ESA,R). Since among the operations R
is a semilattice operation x+y := xyy1, the algebras (ESM, R) are semilattice
modes, and the variety V(R) they generate forms a semilattice mode variety.

General semilattice modes were investigated by K. Kearnes in [1]. He has
shown there that to each variety V of semilattice modes one can associate a
certain commutative semiring S(V). The semiring of a semilattice mode variety
plays a similar rôle as the ring of a variety of affine spaces. Similarly as in the
case of affine R-spaces, the lattice of subvarieties of a variety of semilattice
modes is determined by the congruences of the associated semiring.

Section 1 is devoted to the variety V(R) generated by the class MS(R) of
all algebras (ESM,R) of submodules. We describe a standard form of words in
the free V(R)-algebra on two generators. We use this to describe the semiring
associated with the variety V(R) in Section 2. We show that this semiring
is isomorphic to the semiring of finitely generated ideals of the ring R. In
Section 3 we give some properties of congruence relations of the semiring of
finitely generated ideals of the ring R. Finally, in Section 4 we describe the
lattice of all subvarieties of the variety V(Zn). We will show that this lattice
is isomorphic to the lattice of divisors of n.
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The notation and terminology of the paper is basically as in the book
[5]. We refer the reader to the book for all undefined notions and results.
We use ”Polish” notation for words (terms) and operations, e.g. instead of
w(x1, . . . , xn) we write x1 . . . xnw.

1. Ternary semilattice modes of submodules of modules

Let R be a commutative ring with unity and let (E,+, R) be a module over
R. For each element r of R, define a ternary operation r by

r : E × E × E → E; (x, y, z) 7→ xyzr := x− ry + rz,

and consider the algebra (E,R) with the set R = {r : r ∈ R} of operations.
We will call the algebra (E,R) the ternary affine R-space.

Note that the ternary affine R-space is term equivalent to the affine R-space.
The cosets of submodules of (E, +, R) are exactly the nonempty subalgebras of
the algebra (E, R). Consider the set ESA of non-empty subalgebras of (E, R).
The set ESA forms the algebra (ESA,R) under the following complex product
operations:

r : ESA× ESA× ESA → ESA;

(X, Y, Z) 7→ {xyzr| x ∈ X, y ∈ Y, z ∈ Z}.
Let ESM be the set of submodules of the R-module (E, +, R). Note that for
each r in R and U, V in ESM the sets

rU = {ru|u ∈ U}, U + V = {u + v|u ∈ U, v ∈ V }
are submodules of the R-module (E, +, R). Then

UV Wr = U − rV + rW = U + rV + rW

is a submodule of (E, +, R), too. Hence (ESM,R) is a subalgebra of the
algebra (ESA, R).

The sum of submodules

U + V = U + V + V = UV V 1

is the semilattice operation. The inclusion structure is recovered from
(ESM, +) via U ≤ V iff U + V = V . It turns out that the algebra (ESM, R)
is a semilattice mode.

Let MS(R) denote the class of algebras (ESM, R) of submodules of all
modules (E,+, R) over the ring R. Let V(R) be the variety generated by the
class MS(R).

We have the following lemma.
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Lemma 1.1. In the variety V(R) the following identities are satisfied for any
r, r1, r2, . . . , rn, s1, s2, . . . , sm, t1, t2, . . . , tp in R:

i) xyyr1yyr2 . . . yyrnxyys1yys2 . . . yysmxyyt1yyt2 . . . yytp r

= xyyr1yyr2 . . . yyrnyyrs1yyrs2 . . . yyrsmyyrt1yyrt2 . . . yyrtp,

ii) xyyr1yyr2 . . . yyrnyxxs1xxs2 . . . xxsmyxxt1xxt2 . . . xxtp r

= xyyr1yyr2 . . . yyrnyyr,

iii) xyyr1yyr2 . . . yyrnxyys1yys2 . . . yysmyxxt1xxt2 . . . xxtp r

= xyyr1yyr2 . . . yyrnyyrs1yyrs2 . . . yyrsmyyr,

iv) xyyr1yyr2 . . . yyrn = xyyr1σyyr2σ . . . yyrnσ,

for each permutation σ of the set {1, 2, . . . , n}.
Lemma 1.1. gives the following theorem.

Theorem 1.2. In the free V(R)-algebra FV (R)(x, y) on two generators x and
y, each further element may be expressed in the standard form

x1x2x2r1x2x2r2 . . . x2x2rn,

where x1 and x2 are in {x, y}, x1 6= x2, r1, r2, . . . , rn are in R and ri 6= rj for
i 6= j.

2. The semiring of the variety V(R).

In [1] K. Kearnes has shown that to each variety of semilattice modes one
can associate a certain semiring. Such a semiring determines many properities
of the variety.

Let V be a variety of semilattice modes with the semilattice operation +
and FV (x, y) denote the free V-algebra on two generators x and y. Let S(V)
be the subset of FV (x, y) consisting of all t in FV (x, y) such that t + y = t. It
is easy to check that S(V) is a subalgebra of FV (x, y). For each t in FV (x, y)
define the endomorphism

et : FV (x, y) → FV (x, y)

determined by x 7→ t and y 7→ y. For t and s in FV (x, y) let

s • t := set.

Theorem 2.1 (1). Let V be a variety of semilattice modes with the semilattice
operation +. The algebra (S(V), +, •, 1, 0) with two binary operations + and
• defined as above and two constants 1 := x + y and 0 := y, is a commutative
semiring, satisfying 1 + s = 1 for each s in S(V).

We will call the semiring (S(V), +, •, 1, 0) the semiring associated with the
variety V.
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As was noticed before the algebras (ESM,R) are semilattice modes and the
variety V(R) they generate is a variety of semilattice modes. The semilattice
operation is defined by

x + y := xyy1 = yxx1.

In this section we describe the semiring associated with the variety V(R)
explicitly.

Lemma 2.2. The subset S(V(R)) of FV (R)(x, y) consisting of all t in
FV (R)(x, y) such that t + y = t, is equal to the set

{yxxr1xxr2 . . . xxrn | r1, r2, . . . , rn ∈ R}.
Proof. By Theorem 1.2. each element of FV (R)(x, y) can be represented by
xyyr1yyr2 . . . yyrn or yxxr1xxr2 . . . xxrn for r1, r2, . . . , rn in R. If for
r1, r2, . . . , rn in R, t = yxxr1xxr2 . . . xxrn then by Lemma 1.1.

t + y = yxxr1xxr2 . . . xxrn + yxx0
= yxxr1xxr2 . . . xxrnyxx0yxx0 1
= yxxr1xxr2 . . . xxrnxx0xx0
= yxxr1xxr2 . . . xxrn = t.

On the other hand, if t = xyyr1yyr2 . . . yyrn then

t + y = xyyr1yyr2 . . . yyrnyy1 = xyy1 = yxx1.

In this case, t + y = t implies t = yxx1, what completes the proof.

Let (r1, r2, . . . , rn) denote the ideal of the ring R generated by the set
{r1, r2, . . . , rn} ⊆ R. Let If (R) be the set of all finitely generated ideals of R.
For r1, . . . , rn, s1, . . . , sm in R

(r1, . . . , rn) + (s1, . . . , sm) = (r1, . . . , rn, s1, . . . , sm),

(r1, . . . , rn) · (s1, . . . , sm) = (r1s1, . . . , r1sm, . . . , rns1, . . . , rnsm).

Lemma 2.3. For a commutative ring R with unity 1, the algebra
(If (R),+, ·, (1), (0)), where + denote the ideal sum and · denote the ideal mul-
tiplication, is a commutative semiring satisfying 1 + t = 1.

Theorem 2.4. Let R be a commutative ring with unity. Let V(R) be the
variety of semilattice modes generated by the algebras (ESM,R) of submod-
ules of all modules (E,+, R). The semiring S(V(R)) associated with V(R) is
isomorphic to the semiring (If (R), +, ·, (1), (0)) of finitely generated ideals of
the ring R.

Proof. To show that (S(V(R)), +, •, x + y, y) is isomorphic to the semiring
(If (R),+, ·, (1), (0)) let us define the following mapping

h : S(V(R)) → If (R); yxxr1xxr2 . . . xxrn 7→ (r1, r2, . . . , rn).
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First note that the mapping h is well-defined. Let yxxr1xxr2 . . . xxrn and
yxxs1xxs2 . . . xxsm be equal in S(V(R)). If x = R and y = {0} then

yxxr1xxr2 . . . xxrn = {0}RRr1RRr2 . . . RRrn

= {0}+ (r1)R + (r2)R + . . . + (rn)R
= (r1, r2, . . . , rn)R = (r1, r2, . . . , rn).

On the other hand

yxxs1xxs2 . . . xxsm = {0}RRs1RRs2 . . . RRsm

= {0}+ (s1)R + (s2)R + . . . + (sm)R
= (s1, s2, . . . , sm)R = (s1, s2, . . . , sm).

This shows that (r1, r2, . . . , rn) = (s1, s2, . . . , sm) and consequently the map-
ping h is well defined.
Now we want to show that h is a semiring homomorphism.
Let yxxr1xxr2 . . . xxrn and yxxs1xxs2 . . . xxsm be in S(V(R)). Then by
Lemma 1.1.

(yxxr1xxr2 . . . xxrn + yxxs1xxs2 . . . xxsm)h
= (yxxr1xxr2 . . . xxrnyxxs1xxs2 . . . xxsmyxxs1xxs2 . . . xxsm1)h
= yxxr1xxr2 . . . xxrnxxs1xxs2 . . . xxsmh

= (r1, r2, . . . , rn, s1, s2, . . . , sm)
= (r1, r2, . . . , rn) + (s1, s2, . . . , sm)
= yxxr1xxr2 . . . xxrnh + yxxs1xxs2 . . . xxsmh.

Similarly

(yxxr1xxr2 . . . xxrn • yxxs1xxs2 . . . xxsm)h
= (yxxr1xxr2 . . . xxrneyxxs1xxs2...xxsm)h
= (r1s1, r1s2, . . . , r1sm, r2s1, r2s2, . . . , r2sm, . . . , rns1, rns2, . . . , rnsm)
= (r1, r2, . . . , rn) · (s1, s2, . . . , sm)
= yxxr1xxr2 . . . xxrnh · yxxs1xxs2 . . . xxsmh.

Moreover (x + y)h = yxx1h = (1) and yh = yxx0h = (0).
So the mapping h is a semiring homomorphism.

To show that h is an isomorphism, consider two ideals of the ring R gener-
ated by {r1, r2, . . . , rn} and by {s1, s2, . . . , sm}. Assume that (r1, r2, . . . , rn) =
(s1, s2, . . . , sm). It follows that for any submodules U and V in any ESM ,

r1U + r2U + . . . + rnU = (r1, r2, . . . , rn)U
= (s1, s2, . . . , sm)U = s1U + s2U + . . . + smU
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and consequently

V UUr1UUr2 . . . UUrn = V + r1U + r2U + . . . + rnU

= V + s1U + s2U + . . . + smU = V UUs1UUs2 . . . UUsm.

Thus the identity

yxxr1xxr2 . . . xxrn = yxxs1xxs2 . . . xxsm

holds in V(R) and h is an embedding. Moreover it is clear that h is onto what
completes the proof of Theorem.

Note that for invertible r in R the following identity

xyyryyr1yyr2 . . . yyrn = xyy1

also holds in V(R). This gives the following Corollary.

Corollary 2.5. Let F be a field. Then the semiring associated with the variety
V(F ) generated by algebras (ESV, F ) of subspaces of vector spaces (E,+, F )
over the field F , is two element semiring ({(0), (1)}, +, ·, (1), (0)) isomorphic
to the semiring associated with the variety Sl of semilattices.

3. Congruence relations on If (Zn).

Lemma 3.1. Let R be a commutative ring with unity, n be natural number
and r11, . . . , r1k1 , . . . , rn1, . . . , rnkn be in R. For any congruence relation Θ on
If (R)

(ri1, . . . , riki)Θ(0), for i = 1, . . . , n and ki ∈ N

if and only if
(r11, . . . , r1k1 , . . . , rn1, . . . , rnkn)Θ(0).

Now let us consider the ring Zn. This ring is a principal ideal ring and for
r, s in Zn, (r) + (s) = (GCD(r, s)).

Note that the semilattice (If (Zn), +) of ideals of Zn is dually isomorphic to
the semilattice (↓ n,GCD) of divisors of n with the greatest common divisor
as a semilattice operation.

Lemma 3.2. Let p be in Zn and i 6= j ≥ 0 be natural numbers. Then for any
congruence relation Θ on If (Zn) if

(pi)Θ(pj)

then
(pmin(i,j))Θ(pk),

for each k ≥ min(i, j).
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Lemma 3.3. Suppose that n factorizes as abcde and a, b, c, d and e are
pairwise relatively prime. Let r := a′b′c′ and s := a′′b′d′, where a′ and a′′ divide
a, b′ divides b, c′ divides c and d′ divides d. Moreover let t := GCD(a′, a′′)be.
Then for any congruence relation Θ on If (Zn)

(r)Θ(s)

if and only if
(t)Θ(0).

Proof. Let

a = pn11
11 . . . p

n1k1
1k1

, a′ = pi11
11 . . . p

i1k1
1k1

, a′′ = pj11
11 . . . p

j1k1
1k1

,

b = pn21
21 . . . p

n2k2
2k2

, b′ = pi21
21 . . . p

i2k2
2k2

,

c = pn31
31 . . . p

n3k3
3k3

, c′ = pi31
31 . . . p

i3k3
3k3

,

d = pn41
41 . . . p

n4k4
4k4

, d′ = pi41
41 . . . p

i4k4
4k4

,

where for u = 1, 2, 3, 4 and w = 1, . . . , ku, puw are prime numbers, nuw ≥ 0
are natural numbers and 0 ≤ iuw ≤ nuw, 0 ≤ j1w ≤ n1w.

Let (r)Θ(s). Then

(GCD(r, p
max(i1s1 ,j1s1 )
1s1

))Θ(GCD(s, p
max(i1s1 ,j1s1 )
1s1

)).

So
(p

i1s1
1s1

)Θ(p
j1s1
1s1

), for s1 = 1, . . . , k1.

Hence by Lemma 3.2.

(p
i1s1
1s1

)Θ(p
j1s1
1s1

)Θ(p
n1s1
1s1

), for s1 = 1, . . . , k1,

and
(a)Θ(a′)Θ(a′′).

Similarly
(GCD(r, p

i3s3
3s3

)) = (p
i3s3
3s3

)Θ(1) = (GCD(s, p
i3s3
3s3

)),
for s3 = 1, . . . , k3, and

(GCD(r, p
i4s4
4s4

)) = (1)Θ(p
i4s4
4s4

) = (GCD(s, p
i4s4
4s4

)),

for s4 = 1, . . . , k4.
Hence by Lemma 3.2.

(p
n3s3
3s3

)Θ(1)Θ(p
n4s4
4s4

),
for s3 = 1, . . . , k3 and s4 = 1, . . . , k4.
Consequently

(c′)Θ(c)Θ(1)Θ(d′)Θ(d).
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Therefore we obtain that (a′c′)Θ(ac) and (a′′d′)Θ(ad).
This implies the following:

(a′c′be)Θ(abcde) = (0) and (a′′d′be)Θ(abcde) = (0).

Finally, we get

(t) = (GCD(a′, a′′)be) = (GCD(a′bc′e, a′′bd′e))Θ(0).

Now assume that (t) = (GCD(a′, a′′)be)Θ(0). We have that (0) ⊆ (a′be) ⊆
(GCD(a′, a′′)be) and (0) ⊆ (a′′be) ⊆ (GCD(a′, a′′)be). So

(a′be)Θ(0)Θ(a′′be).

Hence
(a′bc′e)Θ(0)Θ(a′′bd′e),

and

(r) = (a′b′c′) = GCD(ab′cd′, a′bc′e)Θ(GCD(ab′cd′, a′′bd′e) = (a′′b′d′) = (s).

what complets the proof.

4. The lattice of subvarieties of V(Zn).

K. Kearnes has shown that the lattice of subvarieties of a variety of semi-
lattice modes is determined by the congruences of the associated semiring.
He has proved the following theorems.

Theorem 4.1 (1). If V is a variety of semilattice modes, then any subvariety
U⊆V is axiomatized by the set of all equations xys = xyt satisfied by U, where
xys ≥ y and xyt ≥ y.

In particular, every variety of semilattice modes is axiomatized by entropic
laws and binary equations.

Theorem 4.2 (1). If V is a variety of semilattice modes, then the lattice of
subvarieties of V is dually isomorphic to ConS(V).

Let us denote by Vr the subvariety of V(Zn) that satisfies one additional
identity yxxr = y.

By Lemma 3.1. we have the following corollaries.

Corollary 4.3. Let R be a commutative ring with unity, n and k1, . . . , kn be
natural numbers and ri1, . . . , riki be in R for i = 1, . . . , n. In the variety V(R)
the set of identities

yxxri1 . . . xxriki = y,

is equivalent to the identity

yxxr11 . . . xxr1k1 . . . xxrn1 . . . xxrnkn = y.
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Corollary 4.4. Let r1, . . . , rm be in Zn. Then

Vr1 ∩ . . . ∩ Vrm = VGCD(r1,...,rm).

By Lemma 3.3. the following Theorem holds.

Theorem 4.5. If V is the subvariety of the variety V(Zn) then V=V(Zn) or
V is trivial or V=Vr for some r in Zn, such that GCD(r, n) 6= 1.

Lemma 4.6. Let r, s be in Zn. Vr ⊆ Vs if and only if r | s.
Proof. Assume that r | s. Then (0) ⊆ (s) ⊆ (r).
So for any congruence relation Θ, if (r)Θ(0), then (s)Θ(0). This implies that
Vr ⊆ Vs.
On the other hand, if Vr ⊆ Vs then by Corollary 4.4.

Vr = Vr ∩ Vs = VGCD(r,s)

and consequently r = GCD(r, s) and r | s.
Let (↓ n,GCD, LCM) be the lattice of divisors of n with the meet of two

numbers i and j being their greatest common divisor GCD(i, j) and join of i
and j being their least common multiple LCM(i, j).

Finally we have the following Theorem.

Theorem 4.7. The lattice of all subvarieties of the variety V(Zn) is iso-
morphic to the lattice (n ↓, GCD,LCM). The isomorphism is given by the
mapping h, where the image of the trivial variety is 1, the image of the variety
V(Zn) is n and for r in Zn with GCD(n, r) 6= 1, h(Vr) = r.

Proof. It is evident that the mapping h is onto. We show that it is one-to-one.
Indeed, if Vr = Vs then by Lemma 4.6. r = s.
By Corollary 4.4.

h(Vr ∩ Vs) = h(VGCD(r,s)) = GCD(r, s) = GCD(h(Vr), h(Vs)).

It follows that h is a meet-homomorphism.
Now we show that

Vr ∨ Vs = VLCM(r,s).

By Lemma 4.6. it follows that

Vr ∨ Vs ⊆ VLCM(r,s).

Now if Vr ⊆ V and Vs ⊆ V , then by Theorem 4.5. there is w in Zn such that
V = Vw and r | w and s | w, whence LCM(r, s) | w.
It follows that VLCM(r,s) ⊆ Vw and consequently

Vr ∨ Vs = VLCM(r,s).

This implies that h is a join-homomorphism. Indeed,

h(Vr ∨ Vs) = h(VLCM(r,s)) = LCM(r, s) = LCM(h(Vr), h(Vs)).
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It complets the proof.

Note that, if Zn is a field (n is a prime number) the variety V(Zn) has only
trivial subvarieties.
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