THE LATTICE OF SUBVARIETIES OF THE VARIETY OF
SOME TERNARY MODES

AGATA PILITOWSKA

ABSTRACT. We describe the semiring associated with the variety V(R)
generated by some ternary algebras of submodules of R-modules. We show
that this semiring is isomorphic to the semiring of finitely generated ideals
of the ring R. We also describe the lattice of all subvarieties of the variety
V(Zy,).

Algebras considered in this paper are semilattice modes. A mode is an
idempotent algebra, in the sense that each singleton is a subalgebra, and an
entropic algebra, i.e. each operation as a mapping from a direct power of the
algebra into the algebra is a homomorphism. A mode is called a semilattice
mode if some binary term interprets as a semilattice operation.

Let R be a commutative ring with unity 1. We can describe affine R-
spaces as certain ternary reducts (E, R) of R-modules, and consider algebras
(ESA, R) of subalgebras of algebras (E, R). For each R-module, its submod-
ules form a subalgebra (ESM, R) of (ESA, R). Since among the operations R
is a semilattice operation x4y := xyy1, the algebras (ESM, R) are semilattice
modes, and the variety V(R) they generate forms a semilattice mode variety.

General semilattice modes were investigated by K. Kearnes in [1]. He has
shown there that to each variety V of semilattice modes one can associate a
certain commutative semiring S(V'). The semiring of a semilattice mode variety
plays a similar role as the ring of a variety of affine spaces. Similarly as in the
case of affine R-spaces, the lattice of subvarieties of a variety of semilattice
modes is determined by the congruences of the associated semiring.

Section 1 is devoted to the variety V(R) generated by the class MS(R) of
all algebras (ESM, R) of submodules. We describe a standard form of words in
the free V(R)-algebra on two generators. We use this to describe the semiring
associated with the variety V(R) in Section 2. We show that this semiring
is isomorphic to the semiring of finitely generated ideals of the ring R. In
Section 3 we give some properties of congruence relations of the semiring of
finitely generated ideals of the ring R. Finally, in Section 4 we describe the
lattice of all subvarieties of the variety V(Z,). We will show that this lattice
is isomorphic to the lattice of divisors of n.
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The notation and terminology of the paper is basically as in the book
[5]. We refer the reader to the book for all undefined notions and results.
We use ”Polish” notation for words (terms) and operations, e.g. instead of
w(zy,...,x,) We write xj ... Tyw.

1. TERNARY SEMILATTICE MODES OF SUBMODULES OF MODULES

Let R be a commutative ring with unity and let (F, 4, R) be a module over
R. For each element r of R, define a ternary operation 7 by

FT:EXEXE—E;, (r,y,2)— zyzr:=x—ry+rz,

and consider the algebra (E, R) with the set R = {F : r € R} of operations.
We will call the algebra (E, R) the ternary affine R-space.

Note that the ternary affine R-space is term equivalent to the affine R-space.
The cosets of submodules of (E, +, R) are exactly the nonempty subalgebras of
the algebra (E, R). Consider the set ESA of non-empty subalgebras of (E, R).
The set ES A forms the algebra (ESA, R) under the following complex product
operations:

7:ESAx ESA x ESA — ESA;

(XY, Z) —A{zyzr|z e X,y Y,z € Z}.

Let ESM be the set of submodules of the R-module (E,+, R). Note that for
each r in R and U,V in ESM the sets

rU={rujueU}, U+V={u+vjuclUveV}
are submodules of the R-module (E,+, R). Then
UVWr=U -1V +rW =U+rV +rW

is a submodule of (E,+,R), too. Hence (ESM,R) is a subalgebra of the
algebra (ESA, R).
The sum of submodules

U+V=U+V+4+V=UVVI

is the semilattice operation. The inclusion structure is recovered from
(ESM,+) viaU <V iff U +V = V. It turns out that the algebra (ESM, R)
is a semilattice mode.

Let MS(R) denote the class of algebras (ESM, R) of submodules of all
modules (E, +, R) over the ring R. Let V(R) be the variety generated by the
class MS(R).

We have the following lemma.
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Lemma 1.1. In the variety V(R) the following identities are satisfied for any
TyT1,72y oy Ty 81,82, -+ -y Smy b1, t2, .., tp in R:
i) TYYTIYYT2 - - YYTnTYySTYYSs - - - YySmayytryyts ... yyty T
= TYYTIYYT2 - - - YYTnYYTEIYYTS2 - . . YyTSmyyrtiyyrts . . . yy@a
i) TYYTIYYyrs . . YYrpyrrSITISS . . XCSmyxctizaty .. xxt, T
= TYYriyyra ... yyrayyr,
i) TYYTIYYTs - - YYTaTYySIyYss - - - yySmyratizats . .. xat,
= TYYT1YyYra . . . YYraYyrsiyyrsa . . . yyrsmyyr,
V) TYYTIYYTS - - YYTn = TYYT1YYT20 - - - YYTno
for each permutation o of the set {1,2,...,n}.

=l

Lemma 1.1. gives the following theorem.

Theorem 1.2. In the free V(R)-algebra Fy (g)(x,y) on two generators x and
y, each further element may be expressed in the standard form

T1XoXT2TTL2X2TY . . . LA 2Ty,

where 1 and xo are in {x,y}, 1 # x2, r1,7r2,...,7y are in R and r; # r; for

i ],
2. THE SEMIRING OF THE VARIETY V(R).

In [1] K. Kearnes has shown that to each variety of semilattice modes one
can associate a certain semiring. Such a semiring determines many properities
of the variety.

Let V be a variety of semilattice modes with the semilattice operation +
and Fy (z,y) denote the free V-algebra on two generators x and y. Let S(V)
be the subset of Fy (x,y) consisting of all ¢ in Fy (z,y) such that t +y =¢. It
is easy to check that S(V) is a subalgebra of Fy (x,y). For each ¢ in Fy(z,y)
define the endomorphism

€t : FV(-T,y) - FV(xay)
determined by z +— t and y — y. For t and s in Fy(z,y) let
set:= se;.

Theorem 2.1 (1). Let 'V be a variety of semilattice modes with the semilattice
operation +. The algebra (S(V),+,e,1,0) with two binary operations + and
e defined as above and two constants 1 := x +y and 0 := y, is a commutative
semiring, satisfying 1+ s =1 for each s in S(V).

We will call the semiring (S(V),+, e, 1,0) the semiring associated with the
variety V.
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As was noticed before the algebras (ESM, R) are semilattice modes and the
variety V(R) they generate is a variety of semilattice modes. The semilattice
operation is defined by

r+y:=ayyl = yrxl.
In this section we describe the semiring associated with the variety V(R)
explicitly.

Lemma 2.2. The subset S(V(R)) of Fy(g)(w,y) consisting of all t in
Fy(ry(z,y) such that t +y =t, is equal to the set

{yxamixaTs ... x2Ty | T1,72,. .., € R}.

Proof. By Theorem 1.2. each element of Fy (py(z,y) can be represented by
TYYFYyYrs ... Yy, Or YTTT1TXT3...xTT, for ri,r9,...,r, in R. If for
r1,72,...,Tp in R, t = yxxrizars ... xxr, then by Lemma 1.1.
t+y = yrarxars . .. xaxT, + yrx0
= yrrrizars . .. xxr,yre0yzx0 1
= yxaTxxTs . . . xxTpxx0xx0
= YrITITATY ... TTT, = L.

On the other hand, if t = xyyriyyrs . . . yy7,, then

t+y = zyyriyyra . .. yyrayyl = ayyl = yral.
In this case, t +y = t implies t = yxx1, what completes the proof. ]
Let (ri,72,...,7,) denote the ideal of the ring R generated by the set

{ri,r2,...,rn} C R. Let I¢(R) be the set of all finitely generated ideals of R.
For ri,...,7n,81,...,8m in R

(riyeooyrn) + (815 38m) = (1, ooy Tny 81, - - 5 Sm),s
(r1yeooyrn) - (81,3 8m) = (71815« y P1Smy« -+ s TnS1y« - - s TnSm)-
Lemma 2.3. For a commutative ring R with unity 1, the algebra

(If(R),+,-,(1),(0)), where + denote the ideal sum and - denote the ideal mul-
tiplication, is a commutative semiring satisfying 1 +t = 1.

Theorem 2.4. Let R be a commutative ring with unity. Let V(R) be the
variety of semilattice modes generated by the algebras (ESM, R) of submod-
ules of all modules (E,+, R). The semiring S(V(R)) associated with V(R) is
isomorphic to the semiring (Iy(R),+,-,(1),(0)) of finitely generated ideals of
the ring R.

Proof. To show that (S(V(R)),+,e,z + y,y) is isomorphic to the semiring
(If(R),+,-,(1),(0)) let us define the following mapping

h:S(V(R)) — If(R); yxaTizaTs...xxTy — (T1,72,...,7n).
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First note that the mapping h is well-defined. Let yrarizars...xzT, and
YTXSITLSS . .. TSy, be equal in S(V(R)). If x = R and y = {0} then
yrrrirary ... xxr, = {0} RRFRRr; ... RRr,
={0}+ (r)R+ (r2))R+ ...+ (rn)R

= (r1,r2,...,rn)R=(r1,72,...,70).
On the other hand

YrrSITTSy . .. TSy, = {0} RRSTRRS;3 ... RRs,,
={0}+ (s1))R+ (s2)R+ ...+ (sm)R
= (81,82,...,8m)R = (51,82, ..., 5m).
This shows that (ri,79,...,7m,) = (51, S2,...,5y) and consequently the map-
ping h is well defined.
Now we want to show that A is a semiring homomorphism.

Let yxamizary ... 2T, and yrasizess...xxs, be in S(V(R)). Then by
Lemma 1.1.

(yromzars . .. xxTy, + Yyrrsirrss ... xx8y,)h
= (yxxﬁxx@. L XXTRYTLSIXLSY . . . TXSYTLS1TLSY . . . xx%i)h
= YTITITITS ... TXTp LTSI LTSS . .. TLSmh
= (11,72, .y Tn, S1,52, -« -, Sm,)
= (r1,7r2,. .., ") + (51,52, -, 5m)

= YTXTITITS . .. LT h + YTTS1TXS3 . . . LSy h.
Similarly

(yrorzaers . .. xxT, ® Yyrrsirrss ... tx8y,)h
= (yraTzars . . . 2aTpeyrasizass. vasm )P
= (1r181,7182, -« - s T18m; T251, 7252, -+ - s T28my « + s TS, T1nS2y « « « s TS
= (r1,72,- s 70) - (81,82, -5 Sm)
= YTITLLITY ... TXTh - YTTS1TTSS . .. TLSyh.
Moreover (z + y)h = yzaxlh = (1) and yh = yzax0h = (0).
So the mapping h is a semiring homomorphism.
To show that h is an isomorphism, consider two ideals of the ring R gener-

ated by {ri,72,...,r,} and by {s1,s2,...,$n}. Assume that (r1,re,...,m) =
(81,82,--.,8m)- It follows that for any submodules U and V in any ESM,

rU+rU+ ... 4+rU=(ri,re,...,mn)U
= (81,82, ,8m)U = 51U + 52U + ... + s, U
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and consequently
VOUURMUUry ... UUr, =V + 11U +rU + ... +1r,U
=V4+s51U+sU+...+58,U =VUUs57UUs;...UUs,,.
Thus the identity
YTITLTITY ... TXTy, = YTTS1LLS2 ... LTSy,
holds in V(R) and h is an embedding. Moreover it is clear that h is onto what
completes the proof of Theorem. O

Note that for invertible r in R the following identity

TYYTYYTIYYT2 - - - YyYTn = Yyl
also holds in V(R). This gives the following Corollary.
Corollary 2.5. Let F' be a field. Then the semiring associated with the variety
V(F) generated by algebras (ESV, F) of subspaces of vector spaces (E,+, F)

over the field F, is two element semiring ({(0),(1)},+,-, (1), (0)) isomorphic
to the semiring associated with the variety Sl of semilattices.

3. CONGRUENCE RELATIONS ON If(Z,).

Lemma 3.1. Let R be a commutative ring with unity, n be natural number
and ri1, ... Tlkys -3 nly - - Tnk, be in R. For any congruence relation © on

17(R)
(Tity .., 7k, )O(0), for i=1,...,n and k; € N
if and only if
(7“11, R B 1 TR K% R Tnkn)@(())
Now let us consider the ring Z,. This ring is a principal ideal ring and for
r,sin Zp, (r) + (s) = (GCD(r, s)).
Note that the semilattice (I¢(Z,),+) of ideals of Z,, is dually isomorphic to

the semilattice (| n, GC'D) of divisors of n with the greatest common divisor
as a semilattice operation.

Lemma 3.2. Let p be in Z,, and i # j > 0 be natural numbers. Then for any
congruence relation © on Ir(Zy,) if

(rhew)
then
DI
for each k > min(i, j).
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Lemma 3.3. Suppose that n factorizes as abede and a, b, ¢, d and e are
pairwise relatively prime. Letr := a'b'c and s := a"V/'d’, where a’ and a” divide
a, b divides b, ¢ divides ¢ and d' divides d. Moreover let t := GCD(d’,a")be.
Then for any congruence relation © on I(Z,)

(r)©(s)
if and only if

(£)©(0).
Proof. Let

_ i1 M1k /011 GEN no__ . j11 J1ky
a=piit Py @ =P Pyl A =P D

_ 21 M2ko /021 02k
b = psi o Dogy s b—pgl...p%27
_ 31 "3k3 /31 U3k
C=Dp3] - Dsg,”» € = D31 -+ Dagy
_ 41 Tky I t41 Tdky
d = py; S T d—p41...p4k4,

where for v = 1,2,3,4 and w = 1,..., ky, Puw are prime numbers, 1., > 0
are natural numbers and 0 < 7y < Nyw, 0 < J1w < M.

Let (r)©(s). Then
(GCD(T, pmaz(hsl ,j151)))G(GCD(S’pmam(ilsl ,jlsl))).

1s1 1s1
So A '
(pzllssll)@(pjll,;l), for s1=1,..., k1.
Hence by Lemma 3.2.

(PO p), for s1=1,... ki,

1sy
and
(a)0(a’)O(a").
Similarly
(GCD(r,psy?)) = (p3)O(1) = (GCD(s, psi?)),
for s3 =1,...,ks3, and

(GED(r.py)) = (NP4} = (GCD(s, i),
for s4 = 1,..., k4.
Hence by Lemma 3.2.
(P3s2)O(1)O(py "),
forss=1,...,k3and s4 =1,..., k4.
Consequently
()©(c)0(1)6(d")O(d).
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Therefore we obtain that (a'¢')O(ac) and (a’d’)O(ad).
This implies the following:
(a''be)O(abede) = (0) and (a”d'be)O(abede) = (0).
Finally, we get
(t) = (GCD(d',a")be) = (GCD(a'bc'e, a”’bd'e))O(0).

Now assume that (t) = (GCD(d’,a”)be)©(0). We have that (0) C (a'be) C
(GCD(d',a")be) and (0) C (a"be) C (GCD(d',a")be). So

(a'be)©(0)O(a"be).
Hence
(a'bde)0(0)0(a"bd'e),
and
(r) = (a'b'd) = GCD(ab'cd',a'bc' e)©O(GCD(ab'cd', a"bd'e) = (a'b'd") = (s).
what complets the proof. O

4. THE LATTICE OF SUBVARIETIES OF V(Z,).

K. Kearnes has shown that the lattice of subvarieties of a variety of semi-
lattice modes is determined by the congruences of the associated semiring.
He has proved the following theorems.

Theorem 4.1 (1). If V is a variety of semilattice modes, then any subvariety
UCV is axiomatized by the set of all equations xys = xyt satisfied by U, where
xys >y and xyt > y.

In particular, every variety of semilattice modes is axiomatized by entropic
laws and binary equations.

Theorem 4.2 (1). If V is a variety of semilattice modes, then the lattice of
subvarieties of V is dually isomorphic to ConS(V).

Let us denote by V, the subvariety of V(Z,,) that satisfies one additional
identity yxzrT = y.

By Lemma 3.1. we have the following corollaries.

Corollary 4.3. Let R be a commutative ring with unity, n and k1, ...,k be
natural numbers and ri1, ..., 1, bein R fori=1,...,n. In the variety V(R)
the set of identities

YTIT3] - . TXT 4k, = Y,
1s equivalent to the identity

YTIT1L .. . TXT 1Ly - - - TXTpl - - - TLT ks, = Y.
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Corollary 4.4. Let ry,...,rm be in Z,. Then
Vie N0 Ve = Ve, irm) -
By Lemma 3.3. the following Theorem holds.

Theorem 4.5. If 'V is the subvariety of the variety V(Z,) then V=V (Z,,) or
V is trivial or V=V, for some r in Z,, such that GCD(r,n) # 1.

Lemma 4.6. Let r,s be in Z,,. V.. C Vy if and only if r | s.

Proof. Assume that r | s. Then (0) C (s) C (r).
So for any congruence relation O, if (r)©(0), then (s)©(0). This implies that
Vi C Vs
On the other hand, if V;. C V; then by Corollary 4.4.
Vi=VenNVs = VGCD(T,S)
and consequently r = GCD(r,s) and r | s. O
Let (| n,GCD,LCM) be the lattice of divisors of n with the meet of two

numbers ¢ and j being their greatest common divisor GC'D(i, j) and join of i
and j being their least common multiple LC'M (i, j).

Finally we have the following Theorem.

Theorem 4.7. The lattice of all subvarieties of the variety V(Zy) is iso-
morphic to the lattice (n |,GCD,LCM). The isomorphism is given by the

mapping h, where the image of the trivial variety is 1, the image of the variety
V(Z,) is n and for r in Z, with GCD(n,r) # 1, h(V,) =r.

Proof. 1t is evident that the mapping h is onto. We show that it is one-to-one.
Indeed, if V. = V; then by Lemma 4.6. r = s.
By Corollary 4.4.

h(Ve 0Vs) = h(Vaep(,s)) = GCD(r, s) = GOD(h(V;), h(V5)).

It follows that h is a meet-homomorphism.
Now we show that

ViV Vs = VLCM(r,s)'
By Lemma 4.6. it follows that

ViV Vs C VLCM(r,s)‘

Now if V. CV and V5 C V, then by Theorem 4.5. there is w in Z, such that
V =V, and r | w and s | w, whence LCM (r,s) | w.
It follows that Vons(r,s) € Vi and consequently

ViV Vs =Viom(r,s)-
This implies that A is a join-homomorphism. Indeed,
h(Ve Vv Vs) = h(Vicm(rs)) = LOM(r,s) = LOM (h(V;), h(V5)).
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It complets the proof. O

Note that, if Z,, is a field (n is a prime number) the variety V(Z,,) has only
trivial subvarieties.
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