
ON SOME CONGRUENCES OF POWER ALGEBRAS

A. PILITOWSKA1 AND A. ZAMOJSKA-DZIENIO2

Abstract. In a natural way we can ”lift” any operation defined on a set A

to an operation on the set of all non-empty subsets of A and obtain from
any algebra (A,Ω) its power algebra of subsets. In this paper we investigate
extended power algebras (power algebras of non-empty subsets with one ad-
ditional semilattice operation) of modes (entropic and idempotent algebras).

We describe some congruence relations on these algebras such that their quo-
tients are idempotent. Such congruences determine some class of non-trivial
subvarieties of the variety of all semilattice ordered modes (modals).

1. Introduction

Power structure of a structure A is an appropriate structure defined on the power
set PA. There are many papers on this topic, we refer the reader to C. Brink [3],
I. Bošnjak, R. Madarász [2] which give an overview of the results and extensive
reference lists.

For a given set A denote by P>0A the family of all non-empty subsets of A.
For any n-ary operation ω : An → A we define the complex (or power) operation
ω : (P>0A)

n → P>0A in the following way:

ω(A1, . . . , An) := {ω(a1, . . . , an) | ai ∈ Ai},
where ∅ ̸= A1, . . . , An ⊆ A. The power (complex or global) algebra of an algebra
(A,Ω) is the algebra (P>0A,Ω).

We can also lift a relation from a set to its power set. For example, if θ is a
binary relation on A then we can define a binary relation θ on (PA)2 as follows:

(1.0.1) XθY ⇔ (∀x ∈ X)(∃y ∈ Y ) xθy and (∀y ∈ Y )(∃x ∈ X) xθy.

Algebras considered in this paper are extended power algebras of modes, i.e.
power algebras (of modes) with the additional operation of join of sets.

Definition 1.1. An algebra (M,Ω) is called a mode if it is idempotent, in the sense
that each singleton is a subalgebra, and entropic, i.e. any two of its operations
commute. Both properties may also be expressed by means of identities:

ω(x, . . . , x) ≈ x, (idempotent law),

ω(ϕ(x11, . . . , xn1), . . . , ϕ(x1m, . . . , xnm)) ≈
ϕ(ω(x11, . . . , x1m), . . . , ω(xn1, . . . , xnm)), (entropic law),
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for every m-ary ω ∈ Ω and n-ary ϕ ∈ Ω.

Modes were introduced and investigated in detail by A. Romanowska and J.D.H.
Smith [19, 20] and for more information about modes we refer the reader to these
monographs.

Closely related to power algebras of sets are complex algebras of subalgebras.
Let S(A) be the set of all (non-empty) subalgebras of (A,Ω). In general, the family
S(A) has not to be closed under complex operations. However if it does, (S(A),Ω)
is a subalgebra of the algebra (P>0A,Ω) and is called the algebra of subalgebras of
(A,Ω). For example, if an algebra (A,Ω) is a mode, then its algebra of subalgebras
is always defined and moreover is again a mode. (See [16]-[18] and [19, Sections 1.4
and 3.1].) It is in contrast with power algebras of modes which are entropic but very
rarely idempotent. In [12, 13] we described the congruence on a power algebra of a
mode which gives as a factor the mode of submodes. In this paper we investigate
other congruences on power algebras of modes which also give an idempotent factor.
Briefly, such congruences we call idempotent congruence relations. By results of C.
Brink [3] it is known that if θ is a congruence relation on a mode (M,Ω), then also
the ”lifted” relation θ defined as in (1.0.1) is a congruence on the power algebra.
But the quotient is idempotent only in very special situations (see Section 2) so all
congruences considered here are not obtained from congruences on (M,Ω).

The paper is organized as follows. In Section 2 we study the basic properties of
power algebras and put a necessary and sufficient condition for the power algebra
to be idempotent.

In [13] we introduced the concept of extended power algebras, i.e. power algebras
with one additional union operation. Obviously, each congruence on the extended
power algebra is a congruence on the power algebra. We also investigated the small-
est congruence of an extended power algebra of a mode that gives an idempotent
factor. In Section 3 other descriptions of such idempotent replica congruence are
presented. Namely, we describe three idempotent congruence relations of extended
power algebras of modes. We present some conditions when these congruences
coincide and examples when they are different.

In Section 4 we introduce the concept of Γ-sinks of an algebra as a special kind
of its subalgebras. It generalizes the concept of sinks introduced in [19]. Next we
use Γ-sinks to define a family of congruences of extended power algebras of a mode
such that the quotient is an idempotent algebra. Such congruences describe some
non-trivial subvarieties of the variety of all semilattice ordered modes.

We conclude the paper with a list of open problems.
The set of all equivalence classes of a relation ϱ ⊆ A×A is denoted by Aϱ. The

symbol N denotes the set of natural numbers including 0.

2. Idempotent power algebras

In this Section we will present some basic properties of idempotent power alge-
bras and the relationship between complex operations and the set-theoretical union
and intersection.

Let (A,Ω) be an algebra. The set P>0A also carries a join semilattice structure
under the set-theoretical union ∪. By adding the operation ∪ to the set of fun-
damental operations of the power algebra of (A,Ω) we obtain the extended power
algebra (P>0A,Ω,∪).
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B. Jónsson and A. Tarski [6] proved that complex operations distribute over the
union ∪, i.e. for each n-ary operation ω ∈ Ω and non-empty subsets A1, . . . , Ai, . . . ,
An, Bi of A

ω(A1, . . . , Ai ∪Bi, . . . , An) =(2.0.1)

ω(A1, . . . , Ai, . . . , An) ∪ ω(A1, . . . , Bi, . . . , An),

for any 1 ≤ i ≤ n.
Power algebras have also the following two elementary properties for any non-

empty subsets Ai ⊆ Bi and Aij of A for 1 ≤ i ≤ n, 1 ≤ j ≤ r:

ω(A1, . . . , An) ⊆ ω(B1, . . . , Bn),(2.0.2)

ω(A11, . . . , An1) ∪ . . . ∪ ω(A1r, . . . , Anr) ⊆(2.0.3)

ω(A11 ∪ . . . ∪A1r, . . . , An1 ∪ . . . ∪Anr).

Note that the definition of a complex operation extends to each linear derived
operation w:

w(A1, . . . , An) = {w(a1, . . . , an) | ai ∈ Ai}.
Each non-linear term t can be obtained from a linear one t∗ by identification of
some variables. Let t∗(x11, . . . , x1k1 , . . . , xm1, . . . , xmkm) be a linear term such that

t(x1, . . . , xm) = t∗(x1, . . . , x1︸ ︷︷ ︸
k1−times

, . . . , xm, . . . , xm︸ ︷︷ ︸
km−times

).

Then for any subsets A1, . . . , Am of A

{t(a1, . . . , am) | ai ∈ Ai} ⊆ t(A1, . . . , Am) =

{t∗(a11, . . . , a1k1 , . . . , am1, . . . , amkm) | aij ∈ Ai} =

t∗(A1, . . . , A1,︸ ︷︷ ︸
k1−times

. . . , Am, . . . , Am︸ ︷︷ ︸
km−times

).

It is easy to see that in general both (2.0.2) and (2.0.3) hold also for all derived
operations. The proofs go by induction on the complexity of terms. In such a case,
we also obtain the inclusion

t(A1, . . . , Ai, . . . , An) ∪ t(A1, . . . , Bi, . . . , An) ⊆
t(A1, . . . , Ai ∪Bi, . . . , An)

that generalizes the distributive law (2.0.1).
The idempotent law will play a special rôle in this paper. First note that if the

power algebra (P>0A,Ω) of (A,Ω) is idempotent then the algebra (A,Ω) must be
idempotent too. Next, if (A,Ω) is idempotent then for any non-empty subset B
of A and ω ∈ Ω, we have B ⊆ ω(B, . . . , B). Moreover, as an easy consequence of
results of A. Romanowska and J.D.H. Smith [17, Proposition 2.1] for an idempotent
algebra (A,Ω), a non-empty subset B ∈ P>0A is a subalgebra of (A,Ω) if and only
if ω(B, . . . , B) = B for each ω ∈ Ω.

Theorem 2.1. Let (A,Ω) be an idempotent algebra. The power algebra (P>0A,Ω)
is idempotent if and only if for each n-ary basic operation ω ∈ Ω and subsets
A1, . . . , An ∈ P>0A

(2.1.1) ω(A1, . . . , An) ⊆ A1 ∪ . . . ∪An.
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Proof. Let (P>0A,Ω) be an idempotent algebra. By (2.0.2), for an n-ary basic
operation ω ∈ Ω and subsets A1, . . . , An ∈ P>0A we have:

ω(A1, . . . , An) ⊆ ω(A1 ∪ . . . ∪An, . . . , A1 ∪ . . . ∪An) = A1 ∪ . . . ∪An.

The last equality follows by idempotency of (P>0A,Ω).
On the other hand, let (P>0A,Ω) be the power algebra of an idempotent algebra

(A,Ω), which satisfies (2.1.1). Let B be a non-empty subset of A, then

B ⊆ ω(B, . . . , B)
(2.1.1)

⊆ B ∪ . . . ∪B = B.

This shows that ω(B, . . . , B) = B and (P>0A,Ω) is idempotent. �

If an algebra (A,Ω) is not idempotent then (2.1.1) does not hold.

Example 2.2. Let (G, ·,−1 , 1) be a group, 1 ̸= g ∈ G, G1 = {g} and G2 = {g−1}.
Then G1G2 = {g}{g−1} = {1} and G1G2 is not contained in the set G1 ∪ G2 =
{g, g−1}.

Corollary 2.3. The power algebra (P>0A,Ω) of an idempotent algebra (A,Ω) is
idempotent if and only if each non-empty subset B of A is a subalgebra of (A,Ω).
In such a case (P>0A,Ω) = (S(A),Ω).

Example 2.4. An algebra (A,Ω) such that ω(a1, . . . , an) ∈ {a1, . . . , an}, for each
n-ary ω ∈ Ω and a1, . . . , an ∈ A, is called conservative. By Corollary (2.3), the
power algebra of any conservative algebra is always idempotent. In particular, the
power algebra of a chain, the power algebra of a left zero-semigroup [20], the power
algebra of an equivalence algebra [4] or the power algebra of a tournament [5] are
all idempotent.

Let θ be a congruence on an idempotent algebra (A,Ω). Obviously, a θ ω(a, . . . , a)
for each a ∈ A and ω ∈ Ω. On the other hand, it is not always true that
X θ ω(X, . . . ,X) for a subset X of A, if (P>0A,Ω) is not idempotent. It is enough
to consider the equality relation on (A,Ω) in such case.

Consider now the family PA of all subsets of A. By the definition of power
operations for arbitrary subsets

ω(A1, . . . , Ai−1, ∅, Ai+1, . . . , An) = ∅,

for all 1 ≤ i ≤ n and each (n-ary) operation ω ∈ Ω. Then the power algebra of all
subsets of A can also be viewed as the Boolean algebra (PA,∪,∩,−, A, ∅,Ω) with
operators Ω. This concept was introduced and studied by B. Jónsson and A. Tarski
[6, 7].

If ω : An → A is an idempotent operation, then the complex operation ω and
the intersection operation of PA are related as follows:

A1 ∩ . . . ∩An ⊆ ω(A1, . . . , An).

If for a subset S ⊆ A, each n-ary ω ∈ Ω and any 1 ≤ i ≤ n,

ω(A, . . . , S︸︷︷︸
i

, . . . , A) ⊆ S,

then S is said to be a sink of (A,Ω). (See [19, Section 3.6].) Of course each sink is
a subalgebra of (A,Ω).
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Remark 2.5. Let (A,Ω) be an idempotent algebra and ω ∈ Ω an n-ary operation.
By results of A. Romanowska and J.D.H. Smith [19, Corollary 366], if A1, . . . , An

are sinks of (A,Ω), then ω(A1, . . . , An) = A1 ∩ . . . ∩An. On the other hand, if for
all subsets A1, . . . , An of A, ω(A1, . . . , An) = A1 ∩ . . . ∩ An, then the set P>0A is
the set of sinks of (A,Ω).

3. Congruences α, ρ and β

Let (M,Ω) be a mode. Denote by I a variety of all idempotent τ -algebras of
type τ : Ω∪· {∪} → N. Then ConI(P>0M) is the set of all congruence relations γ
on (P>0M,Ω,∪), such that the quotient ((P>0M)γ ,Ω) is idempotent. This set is
an algebraic lattice when ordered by inclusion. In [13], we defined two elements of
ConI(P>0M):

X ρ Y ⇔ there exist a k-ary term t and an m-ary term s both of type Ω such

that X ⊆ t(Y, Y, . . . , Y ) and Y ⊆ s(X,X, . . . ,X),

X α Y ⇔ ⟨X⟩ = ⟨Y ⟩,

where ⟨X⟩ denotes the subalgebra of (M,Ω) generated by X.
We also showed there that ρ is the least element of (ConI(P>0M),⊆), i.e. it is

so-called the idempotent replica congruence.
Let P<ω

>0 M be the set of all finite non-empty subsets of a mode (M,Ω). The
congruences α and ρ restricted to the subalgebra P<ω

>0 M of (P>0M,Ω,∪) coincide
(see [13]).

In this section we describe one more idempotent congruence β and discuss with
details when ρ, α and β are equal. First we recall some results obtained in [13]. For
1 ≤ i ≤ k and k ≥ 2, let ti be mi-ary terms. By the composition term t1 ◦ t2 ◦ . . .◦ tk
of the terms t1, t2, . . . , tk is meant an m := m1 · . . . ·mk - ary term defined by the
rule:

t1 ◦ t2(x1, . . . , xm1) := t1(t2(x1), . . . , t2(xm1)),
t1 ◦ . . . ◦ tk(x1, . . . , xr) := t1 ◦ . . . ◦ tk−1(tk(x1), . . . , tk(xr)),

where r = m1 · . . . ·mk−1 and xi = (xi1, . . . , ximk
), for i = 1, . . . , r.

Note that for a mode (M,Ω) and a non-empty subset X of M

t1 ◦ . . . ◦ tk(X, . . . ,X) = tσ(1) ◦ . . . ◦ tσ(k)(X, . . . ,X),

for any permutation σ of the set {1, . . . , k}. Note also that for any derived operation
t, we have X ⊆ t(X, . . . ,X). Hence, by (2.0.2) we can observe the following remark.

Remark 3.1. [13] Let (M,Ω) be a mode. For 1 ≤ i ≤ k, let ti be mi-ary terms
and ∅ ̸= X ⊆M . For the composition term t = t1 ◦ t2 ◦ . . . ◦ tk we have

ti(X,X, . . . ,X︸ ︷︷ ︸
mi

) ⊆ t(X,X, . . . ,X︸ ︷︷ ︸
m1·...·mk

),

for each 1 ≤ i ≤ k.

Let (M,Ω) be a mode and let ∅ ̸= X ⊆ M and ∆ ⊆ Ω. For any n ∈ N let us

define sets X
[n]
∆ in the following way:

X
[0]
∆ := X,

X
[n+1]
∆ :=

∪
δ∈∆

δ(X
[n]
∆ , . . . , X

[n]
∆ ) = (X

[n]
∆ )

[1]
∆ .
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If ∆ = Ω we will use the abbreviated notation X [n] instead of X
[n]
Ω . It is well known

that
⟨X⟩ =

∪
n∈N

X [n].

Lemma 3.2. [13] Let (M,Ω) be a mode, ∆ be a finite subset of Ω and γ ∈
ConI(P>0M). Then X γ X

[n]
∆ , for any n ∈ N.

It is clear that X ⊆ X [n] ⊆ X [n+1] for any n ∈ N. Moreover if X [n] ⊆ Y [m], then
X [n+1] ⊆ Y [m+1], for any n,m ∈ N. Note also that ω1 ◦ . . . ◦ ωn(X, . . . ,X) ∈ X [n],
for operations ω1, . . . , ωn ∈ Ω.

Lemma 3.3. Let (M,Ω) be a mode and let ω ∈ Ω be an n-ary operation. For any
non-empty subsets X1, . . . , Xn of M , and m ∈ N we have

(3.3.1) ω(X
[m]
1 , . . . , X [m]

n ) ⊆ ω(X1, . . . , Xn)
[mn].

Proof. Take m = 1. Let x ∈ ω(X
[1]
1 , . . . , X

[1]
n ). Then there are basic operations

ωi ∈ Ω such that x ∈ ω(ω1(X1, . . . , X1), . . . , ωn(Xn, . . . , Xn)). By Remark (3.1) for
the composition term t = ω1 ◦ . . . ◦ ωn we have

ω(ω1(X1, . . . , X1), . . . , ωn(Xn, . . . , Xn)) ⊆ ω(t(X1, . . . , X1), . . . , t(Xn, . . . , Xn)) =

= t(ω(X1, . . . , Xn), . . . , ω(X1, . . . , Xn)) ⊆ ω(X1, . . . , Xn)
[n]

and (3.3.1) is true for m = 1.
Now assume that the hypothesis (3.3.1) is established for m > 1. Hence by

(3.3.1) for m = 1 and the induction assumption we obtain

ω(X
[m+1]
1 , . . . , X [m+1]

n ) = ω((X
[m]
1 )[1], . . . , (X [m]

n )[1]) ⊆ ω(X
[m]
1 , . . . , X [m]

n )[n] ⊆

⊆ (ω(X1, . . . , Xn)
[mn])[n] = ω(X1, . . . , Xn)

[(m+1)n],

which completes the proof. �

Now we define a binary relation β on the set P>0M in the following way:

X β Y ⇔ (∃k, n ∈ N) X ⊆ Y [k] and Y ⊆ X [n].

Theorem 3.4. For a mode (M,Ω), the relation β belongs to the set ConI(P>0M).

Proof. Obviously, β is reflexive and symmetric. To show that it is transitive let
X β Y and Y β Z for some non-empty subsets X,Y, Z of M . This means that

(∃k, n ∈ N) X ⊆ Y [k] and Y ⊆ X [n]

and
(∃p,m ∈ N) Y ⊆ Z [p] and Z ⊆ Y [m].

Hence X ⊆ Y [k] ⊆ Z [p+k] and Z ⊆ Y [m] ⊆ X [m+n]. Consequently, X β Z and β is
an equivalence relation.

To show that β is a congruence on the extended power algebra (P>0M,Ω,∪), let
ω ∈ Ω be an n-ary complex operation and let X1, . . . , Xn, Y1, . . . , Yn be non-empty
subsets of M . Now let Xi β Yi for 1 ≤ i ≤ n. This means that for each 1 ≤ i ≤ n,

(∃ki,mi ∈ N) Xi ⊆ Y
[ki]
i and Yi ⊆ X

[mi]
i .

By (2.0.2),

ω(X1, . . . , Xn) ⊆ ω(Y
[k1]
1 , . . . , Y [kn]

n ) ⊆ ω(Y
[max(k1,...,kn)]
1 , . . . , Y [max(k1,...,kn)]

n ).



ON SOME CONGRUENCES OF POWER ALGEBRAS 7

Finally, by Lemma (3.3),

ω(X1, . . . , Xn) ⊆ ω(Y1, . . . , Yn)
[nmax(k1,...,kn)].

Similarly we can show that

ω(Y1, . . . , Yn) ⊆ ω(X1, . . . , Xn)
[nmax(m1,...,mn)],

and consequently ω(X1, . . . , Xn) β ω(Y1, . . . , Yn).
Moreover,

(∃k, p ∈ N) X1 ∪X2 ⊆ Y
[k]
1 ∪ Y [p]

2 ⊆ Y
[max(k,p)]
1 ∪ Y [max(k,p)]

2 ⊆ (Y1 ∪ Y2)[max(k,p)]

and similarly

(∃m, r ∈ N) Y1 ∪ Y2 ⊆ (X1 ∪X2)
[max(m,r)].

Hence (X1 ∪X2) β (Y1 ∪ Y2) and β is also a congruence relation on (P>0M,Ω,∪).
It is also clear that

X ⊆ ω(X, . . . ,X) and ω(X, . . . ,X) ⊆ X [1],

whence X β ω(X, . . . ,X), and ((P>0M)β ,Ω) is idempotent. �

We will show that in some cases the congruence β is the least element of the
lattice (ConI(P>0M),⊆). By Lemma (3.2) we immediately obtain the following.

Corollary 3.5. Let (M,Ω) be a mode and Ω be a finite set of operations. The
relation β is the least element of the lattice (ConI(P>0M),⊆), i.e β = ρ.

Theorem 3.6. Let (M,Ω) be a mode. The congruences β and ρ restricted to the
subalgebra P<ω

>0 M of (P>0M,Ω,∪) coincide:

βP<ω
>0 M = ρP<ω

>0 M .

Proof. Let X,Y ∈ P<ω
>0 M and X β Y and γ ∈ ConI(P<ω

>0 M). Since X and Y are

finite, there exist k,m ∈ N and finite subsets ∆1,∆2 of Ω such that X ⊆ Y
[k]
∆1

and

Y ⊆ X
[m]
∆2

. By Lemma (3.2), X γ X
[m]
∆2

and Y γ Y
[k]
∆1

. Hence

X γ X
[m]
∆2

= X
[m]
∆2

∪ Y γ X ∪ Y γ X ∪ Y [k]
∆1

= Y
[k]
∆1

γ Y.

Thus, βP<ω
>0 M ⊆ γ and βP<ω

>0 M is the least element of the lattice (ConI(P<ω
>0 M),⊆

). �

By results of [13] one obtains

Corollary 3.7. Let (M,Ω) be a mode. The congruences α, β and ρ restricted to
the subalgebra P<ω

>0 M of (P>0M,Ω,∪) coincide:

ρP<ω
>0 M = αP<ω

>0 M = βP<ω
>0 M .

The following example shows that in general, congruences α and β are different.

Example 3.8. A differential groupoid is a mode groupoid (D, ·) satisfying the
additional identity:

x(xy) = x.

Note also two other identities true in differential groupoids:

x(yz) = xy, (xy)z = (xz)y.
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Let (D(x, y), ·) be the free differential groupoid on two generators x and y. As was
shown in [15] each element of (D(x, y), ·) may be expressed as (. . . ((x y)y) . . .)y︸ ︷︷ ︸

k−times

=:

xyk or yxn for some k, n ∈ N. Hence subalgebras of (D(x, y), ·) are any finite or in-
finite subsets of the sets {x, xy, xy2, xy3, . . .} or {y, yx, yx2, yx3, . . .} or subalgebras
generated by two elements xyk and yxn for some k, n ∈ N, i.e.:

⟨{xyk, yxn}⟩ = {xyk, xyk+1, xyk+2, . . .} ∪ {yxn, yxn+1, yxn+2, . . .}.
Let us consider congruences α and β defined on (P>0(D(x, y)), ·,∪). Note that each
finite subset which contains x and y belongs to the same congruence class {x, y}β .
But none of the finite sets is in the relation β with a non-finite one, so the algebra
⟨{x, y}⟩ could not belong to the class {x, y}β . Hence, α ̸= β.

Remark 3.9. Let (M,Ω) be a mode with a finite set Ω of operations. Assume
that (M,Ω) is not locally finite. Then congruences α and β of (P>0M,Ω,∪) are
different.

Proof. Let (B,Ω) be an infinite subalgebra of (M,Ω), generated by a finite set X.
Hence, of course B α X. But there is no k ∈ N such that

B ⊆
∪
ν∈Ω

ν(X [k−1], . . . , X [k−1]) = X [k],

whence (B,X) /∈ β and α ̸= β. �

Also the congruences β and ρ are different in a general case.

Example 3.10. Let D be the ring of dyadic rational numbers, i.e. rationals of the
formm·2−n for integersm and n. Consider the mode (D,D), where D = {d | d ∈ D}
is the set of binary operations defined as follows:

d(x, y) := (1− d)x+ dy.

It is known that such algebra belongs to the variety of modes defined by the iden-
tities:

0(x, y) = x = 1(y, x),

r(p(x, y), q(x, y)) = r(p, q)(x, y)

and that this variety is equivalent to the variety D of affine D-spaces. (See [20,

Chapter 6.3].) In particular, each m-ary derived operation t(x1, . . . , xm) of (D,D)
can be expressed as

t(x1, . . . , xm) = d1x1 + . . .+ dmxm,

where d1, . . . , dm ∈ D and
m∑
i=1

di = 1.

Consider two subsets Z and {0, 1} of the set D. We can see that Z β {0, 1}
since Z ⊂ {0, 1}[1] = D and {0, 1} ⊂ Z[0] = Z. Obviously, the sets Z and {0, 1}
are α-related since ⟨{0, 1}⟩ = ⟨Z⟩ = D. In fact, since the only subalgebras of
D are singletons and D itself, both congruences are equal. Now for each m-ary
(linear) derived operation t we have t({0, 1}, {0, 1}, . . . , {0, 1}) = {t(x1, . . . , xm) |
xi ∈ {0, 1}} = {d1x1 + . . .+ dmxm | xi ∈ {0, 1}}. Note that {d1x1 + . . .+ dmxm |
xi ∈ {0, 1}} is a finite subset of a commutative submonoid of (D,+) generated
by the set {d1, . . . , dm}. It follows that there is no such m-ary term t of type
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D that Z ⊆ t({0, 1}, {0, 1}, . . . , {0, 1}). As a consequence (Z, {0, 1}) /∈ ρ, whence
ρ  β = α.

The next example shows that for equivalent algebras their extended power alge-
bras need not be equivalent.

Example 3.11. Recall that a quasigroup (Q, ·, \, /) is an algebra with three binary
operations of multiplication ·, right division \ and left division / satisfying the
identities:

(x · y)/y = x = (x/y) · y
y\(y · x) = x = y · (y\x).

A quasigroup is described as commutative if its multiplication is commutative. A
quasigroup mode is an idempotent and entropic quasigroup. It is known (see e.g.
[20, Chapter 6.6]) that the varietyQ of commutative quasigroup modes is equivalent
to the variety D of affine D-spaces. The quasigroup operations of affine D-spaces
are defined by: · := 2−1, \ := −1, and / := 2.

In particular, (D, ·, \, /) = (D, 2−1,−1, 2) ∈ Q and it is equivalent to the D-affine
space (D,D). Let us consider congruences α, β and ρ of (P>0D, 2−1,−1, 2,∪). By
Corollary (3.5), the congruences β and ρ are equal. The quasigroup (D, 2−1,−1, 2)
is infinite and is generated by the set {0, 1}, then by Remark (3.9), α ̸= β. On
the other hand, as we showed in Example (3.10), the congruences α, β and ρ of
the power algebra of the affine D-space (D,D) satisfy α = β and β ̸= ρ. Since
equivalent algebras must have the same congruences (see [9, Section 4.12]), we
obtain that (P>0D, 2−1,−1, 2,∪) and (P>0D,D,∪) are not equivalent.

4. Γ-sinks

Let (M,Ω) be a mode. In this section we will investigate in full detail a subfamily
of congruences in ConI(P>0M) which are closely connected to the concept of Γ-
sinks. Such congruences determine some non-trivial subvarieties of the variety of
all semilattice ordered modes.

Definition 4.1. Let Γ ⊆ Ω. A subalgebra (S,Ω) of a mode (M,Ω) is said to be a
Γ-sink of (M,Ω) if for each n-ary operation ν ∈ Γ and i = 1, . . . , n,

ν(M, . . . , S︸︷︷︸
i

, . . . ,M) ⊆ S.

In particular, an Ω-sink is a sink, as defined in Section 2. Obviously, for a Γ-sink
S and an n-ary ν ∈ Γ, ν(M, . . . , S︸︷︷︸

i

, . . . ,M) = S for each i = 1, . . . , n. Note also

that for any m-ary ω ∈ Ω and i = 1, . . . ,m, a set ω(M, . . . , S︸︷︷︸
i

, . . . ,M) is a Γ-sink.

A. Romanowska and J.D.H. Smith showed in [19] that for a mode (M,Ω), the
set S(M) of all non-empty subalgebras of (M,Ω) has a mode structure under the
Ω-complex operations.

Let SΓ(M) denote the set of all non-empty Γ-sinks of a mode (M,Ω). (Of course
S∅(M) = S(M).)

Lemma 4.2. For a mode (M,Ω) and any subset Γ ⊆ Ω, (SΓ(M),Ω) is a submode
of (S(M),Ω).
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Proof. For an n-ary operation ω ∈ Ω, consider the complex ω-product ω(S1, . . . , Sn)
of Γ-sinks S1, . . . , Sn. Obviously it is a non-empty subalgebra of (M,Ω). By the
entropic law, for each operation ν ∈ Γ

ν(M, . . . , ω(S1, . . . , Sn), . . . ,M) = ω(S1, . . . , Sn).

�

Let (M,Ω) be a mode, ∅ ≠ X ⊆M and Γ ⊆ Ω. For each operation ν ∈ Γ let nν
denote its arity. Let us define sets X [n]Γ by the following recursion:

X [0]Γ := X,

X [n+1]Γ :=
∪
ν∈Γ

∪
1≤i≤nν

ν(M, . . . ,X [n]Γ︸ ︷︷ ︸
i

, . . . ,M) ∪
∪

ν∈Ω\Γ

ν(X [n]Γ , . . . , X [n]Γ).

It is clear that for any n,m ∈ N, X ⊆ X [n]Γ ⊆ X [n+1]Γ . Moreover, if X [n]Γ ⊆
Y [m]Γ then X [n+1]Γ ⊆ Y [m+1]Γ and obviously X [n+1]Γ = (X [n]Γ)[1]Γ . If Γ = ∅ we
will use the abbreviated notation X [n] instead of X [n]∅ (see Section 3).

Let us denote by ⟨X⟩Γ the Γ-sink generated by a non-empty set X, i.e. the
intersection of all Γ-sinks that include X.

Theorem 4.3. Let (M,Ω) be a mode, ∅ ̸= X ⊆M and Γ ⊆ Ω. Then

⟨X⟩Γ =
∪
n∈N

X [n]Γ .

Proof. Let ω ∈ Ω be an l-ary basic operation and X [mi]Γ be a subset of
∪

n∈N
X [n]Γ

for i = 1, . . . l. Consider now a set ω(X [m1]Γ , X [m2]Γ , . . . , X [ml]Γ). We can easily
see that the latter is a subset of ω(X [m]Γ , X [m]Γ , . . . , X [m]Γ) for some large enough
m ∈ N. But then ω(X [m]Γ , . . . , X [m]Γ) ⊆ X [m+1]Γ ⊆

∪
n∈N

X [n]Γ and
∪

n∈N
X [n]Γ is a

subalgebra of (M,Ω). Further, for any k-ary operation ν ∈ Γ, 1 ≤ i ≤ k and for
any m ∈ N,

ν(M, . . . ,X [m]Γ︸ ︷︷ ︸
i

, . . . ,M) ⊆
∪
n∈N

X [n]Γ ,

which proves that
∪

n∈N
X [n]Γ is a Γ-sink.

Now let S be a Γ-sink that includes X. It suffices to show that for every n ∈ N,
X [n]Γ ⊆ S. But this immediately follows by induction on n. �

As it was proved by A. Romanowska and J.D.H. Smith [19], for each n-ary
complex operation ω ∈ Ω and any non-empty subsets X1, . . . , Xn ⊆M

⟨ω(X1, . . . , Xn)⟩ = ω(⟨X1⟩, . . . , ⟨Xn⟩).
Similar results are also true for any Γ-sinks. First we notice an useful property

which holds for power algebra of modes.

Remark 4.4. Let Xij be a nonempty subset of a mode (M,Ω) for i = 1, . . . , n and
j = 1, . . . ,mi. Let ω, νi be respectively n-ary and mi-ary operations in Ω. Then

ω(ν1(X11, X12, . . . , X1m1), . . . , νn(Xn1, Xn2, . . . , Xnmn)) ⊆
νδ(1) ◦ νδ(2) ◦ · · · ◦ νδ(n) ◦ ω({X11, X12, . . . , X1m1} × · · · × {Xn1, Xn2, . . . , Xnmn}),

for any permutation δ of the set {1, . . . , n}.
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Proof. It goes by straightforward calculations with use of idempotency, entropicity
and basic properties of power algebras of modes given in Section 2. �

Lemma 4.5. For each n-ary complex operation ω ∈ Ω and any non-empty subsets
X1, . . . , Xn of M

⟨ω(X1, . . . , Xn)⟩Γ = ω(⟨X1⟩Γ, . . . , ⟨Xn⟩Γ).

Proof. For any 1 ≤ i ≤ n,Xi ⊆ ⟨Xi⟩Γ. So by (2.0.2), ω(X1, . . . , Xn) ⊆ ω(⟨X1⟩Γ, . . . ,
⟨Xn⟩Γ). As we showed before, ω(⟨X1⟩Γ, . . . , ⟨Xn⟩Γ) is a Γ-sink. Hence,

⟨ω(X1, . . . , Xn)⟩Γ ⊆ ω(⟨X1⟩Γ, . . . , ⟨Xn⟩Γ).

On the other side let x ∈ ω(⟨X1⟩Γ, . . . , ⟨Xn⟩Γ). Then x ∈ ω(X
[m]Γ
1 , . . . , X

[m]Γ
n )

for some large enoughm ∈ N. We will show that for every k ∈ N, ω(X [k]Γ
1 , . . . , X

[k]Γ
n )

⊆ ⟨ω(X1, . . . , Xn)⟩Γ. We start with the set ω(X
[1]Γ
1 , . . . , X

[1]Γ
n ). Note that X

[1]Γ
i ⊆∪

ν∈Ω

∪
1≤j≤nν

ν(M, . . . , Xi︸︷︷︸
j

, . . . ,M). Let x ∈ ω(X
[1]Γ
1 , . . . , X

[1]Γ
n ), then there exist

operations νi ∈ Ω for i = 1, . . . , n such that

x ∈ω(ν1(M, . . . , X1︸︷︷︸
j1

, . . . ,M), . . . , νn(M, . . . , Xn︸︷︷︸
jn

, . . . ,M)) ⊆

νδ(1) ◦ · · · ◦ νδ(k) ◦ νδ(k+1) ◦ · · · ◦ νδ(n)(M, . . . , ω(X1, . . . , Xn)︸ ︷︷ ︸
j

, . . . ,M),

where δ is such permutation that all operations νδ(1), . . . , νδ(k) are in Ω − Γ and
νδ(k+1), . . . , νδ(n) in Γ. The latter set is a subset of

νδ(1) ◦ · · · ◦ νδ(k)(ω(X1, . . . , Xn)
[n−k]Γ , . . . , ω(X1, . . . , Xn)

[n−k]Γ)

⊆ ω(X1, . . . , Xn)
[n]Γ ⊆ ⟨ω(X1, . . . , Xn)⟩Γ.

Now by induction on k we obtain

ω(X
[k+1]Γ
1 , . . . , X [k+1]Γ

n ) = ω((X
[k]Γ
1 )[1]Γ , . . . , (X [k]Γ

n )[1]Γ) ⊆

ω(X
[k]Γ
1 , . . . , X [k]Γ

n )[n]Γ ⊆ ⟨ω(X1, . . . , Xn)⟩Γ,
which finishes the proof. �

Lemma (4.5) shows that if each subset A1, . . . , An ⊆M is finite then the complex
ω-product ω(⟨A1⟩Γ, . . . , ⟨An⟩Γ) is finitely generated Γ-sink of (M,Ω).

Theorem 4.6. Let (M,Ω) be a mode, ∅ ̸= X ⊆M and Γ1,Γ2 ⊆ Ω. Then

⟨X⟩Γ1∪Γ2 = ⟨⟨X⟩Γ1⟩Γ2 .

Proof. It is easy to observe that ⟨X⟩Γ1 ⊆ ⟨X⟩Γ1∪Γ2 , so

⟨⟨X⟩Γ1⟩Γ2 ⊆ ⟨⟨X⟩Γ1∪Γ2⟩Γ2 ⊆ ⟨⟨X⟩Γ1∪Γ2⟩Γ1∪Γ2 = ⟨X⟩Γ1∪Γ2 .

On the other hand, by induction on n one can show that X [n]Γ1∪Γ2 ⊆ ⟨⟨X⟩Γ1⟩Γ2 for
each n ∈ N. Obviously, it holds for n = 0. ThenX [n+1]Γ1∪Γ2 = (X [n]Γ1∪Γ2 )[1]Γ1∪Γ2 ⊆
(⟨⟨X⟩Γ1⟩Γ2)

[1]Γ1∪Γ2 . Further, for ν in Γ2, ν(M, . . . , ⟨⟨X⟩Γ1⟩Γ2 , . . . ,M) = ⟨⟨X⟩Γ1⟩Γ2 .
For ν ∈ Γ1, by Lemma (4.5)

ν(M, . . . , ⟨⟨X⟩Γ1⟩Γ2 , . . . ,M) = ν(⟨M⟩Γ2 , . . . , ⟨⟨X⟩Γ1⟩Γ2 , . . . , ⟨M⟩Γ2) =

⟨ν(M, . . . , ⟨X⟩Γ1 , . . . ,M)⟩Γ2 = ⟨⟨X⟩Γ1⟩Γ2 .
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Finally, if ω ∈ Ω \ (Γ1 ∪ Γ2), then

ω(⟨⟨X⟩Γ1⟩Γ2 , . . . , ⟨⟨X⟩Γ1⟩Γ2) = ⟨ω(⟨X⟩Γ1 , . . . , ⟨X⟩Γ1)⟩Γ2 = ⟨⟨X⟩Γ1⟩Γ2 .

It shows that (⟨⟨X⟩Γ1⟩Γ2)
[1]Γ1∪Γ2 = ⟨⟨X⟩Γ1⟩Γ2 , and implies

⟨X⟩Γ1∪Γ2 =
∪
n∈N

X [n]Γ1∪Γ2 ⊆ ⟨⟨X⟩Γ1⟩Γ2 .

�

Corollary 4.7. For a mode (M,Ω), ∅ ≠ X ⊆M and Γ1,Γ2 ⊆ Ω we have

⟨⟨X⟩Γ1⟩Γ2 = ⟨⟨X⟩Γ2⟩Γ1 .

A modal (or semilattice ordered mode) is an algebra (M,Ω,+) such that (M,Ω)
is a mode, (M,+) is a (join) semilattice (with semilattice order ≤, i.e. x ≤ y ⇔
x + y = y) and the operations ω ∈ Ω distribute over +. Similarly as in the case
of the set of all non-empty subalgebras of (M,Ω), the set of all non-empty Γ-sinks
also forms a semilattice (SΓ(M),+), where the operation + is defined by setting

S1 + S2 := ⟨S1 ∪ S2⟩Γ.
Moreover, by Lemma (4.5) and (2.0.1), for any Γ-sinks A1, . . . , An, B, C of (M,Ω)
and ω ∈ Ω

ω(A1, . . . , B + C, . . . , An) = ω(A1, . . . , ⟨B ∪ C⟩Γ, . . . , An) =

⟨ω(A1, . . . , B ∪ C, . . . , An)⟩Γ = ⟨ω(A1, . . . , B, . . . , An) ∪ ω(A1, . . . , C, . . . , An)⟩Γ =

ω(A1, . . . , B, . . . , An) + ω(A1, . . . , C, . . . , An).

Hence, each operation ω ∈ Ω distributes over +.

Corollary 4.8. For any subset Γ ⊆ Ω, (SΓ(M),Ω,+) is a modal.

Now we can define on the set P>0M , a family {αΓ | Γ ⊆ Ω} of the following
relations:

XαΓY ⇔ ⟨X⟩Γ = ⟨Y ⟩Γ.
It is obvious that each αΓ is an equivalence relation. Note also that α∅ is just
relation α defined in Section 3.

Lemma 4.9. For each subset Γ ⊆ Ω, the relation αΓ is in ConI(P>0M).

Proof. To show that αΓ is a congruence relation on the extended power algebra
(P>0M,Ω,∪), let ω ∈ Ω be an n-ary complex operation and for non-empty subsets
X1, . . . , Xn, Y1, . . . , Yn ⊆ M let XiαΓYi for 1 ≤ i ≤ n. This means that ⟨Xi⟩Γ =
⟨Yi⟩Γ, for 1 ≤ i ≤ n.
Hence by Lemma (4.5),

⟨ω(X1, . . . , Xn)⟩Γ = ω(⟨X1⟩Γ, . . . , ⟨Xn⟩Γ) =
ω(⟨Y1⟩Γ, . . . , ⟨Yn⟩Γ) = ⟨ω(Y1, . . . , Yn)⟩Γ.

Moreover, it is also obvious that X1 ⊆ ⟨X1⟩Γ = ⟨Y1⟩Γ ⊆ ⟨Y1 ∪ Y2⟩Γ and X2 ⊆
⟨X2⟩Γ = ⟨Y2⟩Γ ⊆ ⟨Y1 ∪ Y2⟩Γ. Hence ⟨X1 ∪ X2⟩Γ ⊆ ⟨Y1 ∪ Y2⟩Γ. Similarly, we can
show that ⟨Y1 ∪ Y2⟩Γ ⊆ ⟨X1 ∪X2⟩Γ. Since for each X ⊆ M , the Γ-sink ⟨X⟩Γ is a
subalgebra of (M,Ω), then

⟨ω(X, . . . ,X)⟩Γ = ω(⟨X⟩Γ, . . . , ⟨X⟩Γ) = ⟨X⟩Γ.
This proves that (ω(X, . . . ,X), X) ∈ αΓ and in fact αΓ ∈ ConI(P>0M). �



ON SOME CONGRUENCES OF POWER ALGEBRAS 13

By First Isomorphism Theorem one immediately obtains the following general-
ization of Theorem 3.3. in [13].

Corollary 4.10. Let (M,Ω) be a mode. For any Γ ⊆ Ω, the quotient algebra
((P>0M)αΓ ,Ω,∪) is isomorphic to the modal (SΓ(M),Ω,+).

We say that an algebra is plural if all its operations have arities greater than one.
Let ∅ ̸= Γ ⊆ Ω. Each semilattice (S, ·) may be considered as a plural Γ-algebra
(S,Γ) on setting

ν(x1, . . . , xnν ) := x1 · . . . · xnν ,

for each nν-ary ν ∈ Γ. Such an algebra is often referred to as a Γ-semilattice
obtained from a semilattice (S, ·) (see [19]). A (distributive) Γ-lattice is an algebra
(L,Γ,∨), where (L,∨) is a semilattice, (L,Γ) is a Γ-semilattice obtained from a
semilattice (L,∧) and (L,∧,∨) is a (distributive) lattice.

Corollary 4.11. Let (M,Ω) be a plural mode and ∅ ̸= Γ ⊆ Ω. Then ((P>0M)αΓ ,Γ,∪)
is isomorphic to the distributive Γ-lattice (SΓ(M),Γ,+) obtained from the semilat-
tice (SΓ(M),∩).

Proof. Similarly as it was shown for sinks in [19], for any operation ν ∈ Γ ̸= ∅
and Γ-sinks S1, . . . , Sn in SΓ(M), one has ν(S1, . . . , Sn) ⊆ Si, so ν(S1, . . . , Sn) ⊆
S1 ∩ . . . ∩ Sn. Conversely, for s ∈ S1 ∩ . . . ∩ Sn, s = ν(s, . . . , s) ∈ ν(S1, . . . , Sn).
Thus ν(S1, . . . , Sn) = S1 ∩ . . . ∩ Sn.
Moreover,

S1 ∩ (S1 + S2) = S1 ∩ ⟨S1 ∪ S2⟩Γ = ν(S1, . . . , S1, ⟨S1 ∪ S2⟩Γ) =

⟨ν(S1, . . . , S1, S1 ∪ S2)⟩Γ = ⟨ν(S1, . . . , S1) ∪ ν(S1, . . . , S1, S2)⟩Γ =

⟨S1 ∪ (S1 ∩ S2)⟩Γ = ⟨S1⟩Γ = S1,

and

S1 + (S1 ∩ S2) = ⟨S1 ∪ (S1 ∩ S2)⟩Γ = ⟨S1⟩Γ = S1.

Hence, by Corollary (4.8), (SΓ(M),∩,+) is a distributive lattice. �

By results of [19] we know that for Ω-sinks S1 and S2 of a mode (M,Ω), the
union S1 ∪ S2 is an Ω-sink, too. This implies the following corollary.

Corollary 4.12. [19] Let (M,Ω) be a plural mode. The quotient algebra ((P>0M)αΩ ,
Ω,∪) is isomorphic to the distributive Ω-lattice (SΩ(M),Ω,∪) obtained from the
semilattice (SΩ(M),∩).

Now, we consider the properties of the set {αΓ | Γ ⊆ Ω}.

Lemma 4.13. The set {αΓ | Γ ⊆ Ω} is partially ordered by a set inclusion with
the greatest element αΩ and the least element α∅. In particular,

αΓ1∩Γ2 ⊆ αΓ1 ∩ αΓ2

and

αΓ1 ∪ αΓ2 ⊆ αΓ1∪Γ2 .

Proof. It is evident that, if Γ1 ⊆ Γ2 then ⟨X⟩Γ1 ⊆ ⟨X⟩Γ2 . Let (X,Y ) ∈ αΓ1 . Then
X ⊆ ⟨X⟩Γ1 = ⟨Y ⟩Γ1 ⊆ ⟨Y ⟩Γ2 , so ⟨X⟩Γ2 ⊆ ⟨Y ⟩Γ2 . Similarly ⟨Y ⟩Γ2 ⊆ ⟨X⟩Γ2 , which
implies αΓ1 ⊆ αΓ2 . �
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Theorem 4.14. The ordered set ({αΓ | Γ ⊆ Ω},⊆) is a bounded join-semilattice
({αΓ | Γ ⊆ Ω},∨), where for any Γ1,Γ2 ⊆ Ω,

αΓ1 ∨ αΓ2 = αΓ1∪Γ2 .

Proof. Let ∅ ̸= X,Y ⊆ M . By Lemma (4.13), αΓ1 ∨ αΓ2 ⊆ αΓ1∪Γ2 . Assume
now that (X,Y ) ∈ αΓ1∪Γ2 , so ⟨X⟩Γ1∪Γ2 = ⟨Y ⟩Γ1∪Γ2 . Hence, by Theorem (4.6),
⟨⟨X⟩Γ1⟩Γ2 = ⟨⟨Y ⟩Γ1⟩Γ2 . Consequently, ⟨X⟩Γ1αΓ2⟨Y ⟩Γ1 andXαΓ1⟨X⟩Γ1αΓ2⟨Y ⟩Γ1αΓ1Y ,
which proves that (X,Y ) ∈ αΓ1 ∨ αΓ2 . �

Note that congruences αΓ1 ∩ αΓ2 and αΓ1∩Γ2 do not need to be equal and in
general, the congruence αΓ1 ∩ αΓ2 does not even have to belong to the set ({αΓ |
Γ ⊆ Ω},⊆). Hence, such congruences give another examples of congruences with
idempotent quotient. It is also possible that αΓ1 ⊆ αΓ2 even in the case where Γ1

and Γ2 are incomparable.

Example 4.15. Let (R,+, ·) be a commutative ring with unit 1 and let I(R) be
the set of all ideals of (R,+, ·). For each r ∈ R define binary operations

·r : I(R)× I(R) → I(R) by

a ·r b := {s ∈ R | rs ∈ a} ∩ b.
(Note that a ·1 b = a ∩ b.) It was shown by K. Kearnes in [8] that (I(R), {·r}r∈R)
is a mode.

Let us consider the ring (Z30,+30, ·30), its ideals a := {0}, b := {0, 15}, c :=
{0, 10, 20}, d := {0, 6, 12, 18, 24} and the set Ω := {·2, ·3, ·5} of operations. The
algebra ({a, b, c, d},Ω) is a subreduct of (I(Z30), {·r}r∈Z30). So it is a 4-element
mode with the three binary operations:

·2 a b c d
a a b a a
b a b a a
c a b c a
d a b a d

·3 a b c d
a a a c a
b a b c a
c a a c a
d a a c d

·5 a b c d
a a a a d
b a b a d
c a a c d
d a a a d

Let Γ2 := {·2}, Γ3 := {·3} and Γ5 := {·5}. As a consequence of easy calculations
we obtain the following.

All subsets {a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d} are subalgebras of ({a, b, c, d},Ω)
and ⟨{b, c}⟩ = {a, b, c}, ⟨{b, d}⟩ = {a, b, d}, ⟨{c, d}⟩ = {a, c, d}, ⟨{b, c, d}⟩ = {a, b, c, d}.

⟨{a}⟩Γ2 = ⟨{b}⟩Γ2 = {a, b}, ⟨{c}⟩Γ2 = ⟨{b, c}⟩Γ2 = ⟨{a, c}⟩Γ2 = {a, b, c}
⟨{d}⟩Γ2 = ⟨{a, d}⟩Γ2 = ⟨{b, d}⟩Γ2 = {a, b, d}
⟨{c, d}⟩Γ2 = ⟨{b, c, d}⟩Γ2 = ⟨{a, c, d}⟩Γ2 = {a, b, c, d}

⟨{a}⟩Γ3 = ⟨{c}⟩Γ3 = {a, c}, ⟨{b}⟩Γ3 = ⟨{b, c}⟩Γ3 = ⟨{a, b}⟩Γ3 = {a, b, c}
⟨{d}⟩Γ3 = ⟨{a, d}⟩Γ3 = ⟨{c, d}⟩Γ3 = {a, c, d}
⟨{b, d}⟩Γ3 = ⟨{a, b, d}⟩Γ3 = ⟨{b, c, d}⟩Γ3 = {a, b, c, d}

⟨{a}⟩Γ5 = ⟨{d}⟩Γ5 = {a, d}, ⟨{b}⟩Γ5 = ⟨{a, b}⟩Γ5 = ⟨{b, d}⟩Γ5 = {a, b, d}
⟨{c}⟩Γ5 = ⟨{a, c}⟩Γ5 = ⟨{c, d}⟩Γ5 = {a, c, d}
⟨{b, c}⟩Γ5 = ⟨{a, b, c}⟩Γ5 = ⟨{b, c, d}⟩Γ5 = {a, b, c, d}
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⟨{a}⟩Γ2∪Γ3 = ⟨{b}⟩Γ2∪Γ3 = ⟨{c}⟩Γ2∪Γ3 = {a, b, c}, ⟨{d}⟩Γ2∪Γ3 = {a, b, c, d}

⟨{a}⟩Γ2∪Γ5 = ⟨{b}⟩Γ2∪Γ5 = ⟨{d}⟩Γ2∪Γ5 = {a, b, d}, ⟨{c}⟩Γ2∪Γ5 = {a, b, c, d}

⟨{a}⟩Γ3∪Γ5 = ⟨{c}⟩Γ3∪Γ5 = ⟨{d}⟩Γ3∪Γ5 = {a, c, d}, ⟨{b}⟩Γ3∪Γ5 = {a, b, c, d}

Finally, there is only one Ω-sink {a, b, c, d}.
This shows that the semilattice ({αΓ | Γ ⊆ {·2, ·3, ·5}},⊆) is isomorphic to the

lattice of all divisors of the number 30.
Moreover, in this case ({d}, {a, d}) ∈ αΓ2 ∩ αΓ3 , ({b}, {a, b}) ∈ αΓ2 ∩ αΓ5 and

({c}, {a, c}) ∈ αΓ3 ∩αΓ5 hence αΓ2 ∩αΓ3 ̸= αΓ2∩Γ3 = α∅, αΓ2 ∩αΓ5 ̸= αΓ2∩Γ5 = α∅,
αΓ3∩αΓ5 ̸= αΓ3∩Γ5 = α∅ and αΓ2∩αΓ3 , αΓ2∩αΓ5 , αΓ3∩αΓ5 /∈ {αΓ | Γ ⊆ {·2, ·3, ·5}}.

Now let Γ1 := {·1} and consider the mode ({a, b, c, d}, ·1, ·5). It is also easy to
check that
⟨{a}⟩Γ1

= {a}, ⟨{b}⟩Γ1
= {a, b}, ⟨{c}⟩Γ1

= {a, c}, ⟨{d}⟩Γ1
= {a, d},

⟨{b, c}⟩Γ1 = {a, b, c}, ⟨{b, d}⟩Γ1 = {a, b, d},
⟨{c, d}⟩Γ1 = {a, c, d}, ⟨{b, c, d}⟩Γ1 = {a, b, c, d}.

Obviously, Γ5-sinks are exactly the same as in the previous case and αΓ1 ⊆ αΓ5 =
αΓ1 ∪ αΓ5 . Hence the semilattice ({αΓ | Γ ⊆ {·1, ·5}},⊆) is the 3-element chain:

r α∅

r αΓ1

r αΓ5

Now let X be a non-finite set, V be a variety of Ω-modes and (FV(X),Ω) be the
free V-algebra over the set X.

Theorem 4.16. For any subset Γ ⊆ Ω, the relation αΓ is a fully invariant congru-
ence on (P<ω

>0 FV(X),Ω,∪).

Proof. Let Q,R ∈ P<ω
>0 FV(X). We have to prove that for every endomorphism ψ

of (P<ω
>0 FV(X),Ω,∪), if ⟨Q⟩Γ = ⟨R⟩Γ then also ⟨ψ(Q)⟩Γ = ⟨ψ(R)⟩Γ.

Assume that the notation t(x1, . . . , xn) means the term t ∈ FV(X) contains no
other variables than x1, . . . , xn (but not necessarily all of them).

For each xi ∈ X let us choose a subset Pi ∈ P<ω
>0 FV(X). The mapping ψ :

P<ω
>0 FV(X) → P<ω

>0 FV(X)

(4.16.1) ψ(Q) = ψ({q1(x1, . . . , xn), . . . , qk(x1, . . . , xn)}) :=
∪
q∈Q

q(P1, . . . , Pn)

is a homomorphism of the algebra (P<ω
>0 FV(X),Ω,∪).

Note that the algebra (P<ω
>0 FV(X),Ω,∪) is generated by the set {{x} | x ∈ X}

and for any {xi}, we have ψ({xi}) = Pi. Because each homomorphism is uniquely
defined on generators of an algebra then we obtain that each endomorphism ψ of
(P<ω

>0 FV(X),Ω,∪) is of the form (4.16.1).
Now we will prove an auxiliary result.

Claim. Let m ∈ N, and R,P1, . . . , Pn ∈ P<ω
>0 FV(X). For each r ∈ R[m]Γ we

have r(P1, . . . , Pk) ⊆ (ψ(R))[m]Γ .
Proof of the Claim. For m = 0 the result is obvious. Now assume that the Claim
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is established for m > 0 and let r ∈ R[m+1]Γ . Then there exists a nν-ary opera-
tion ν ∈ Γ such that r ∈ ν(FV(X), . . . , R[m]Γ , . . . , FV(X)) or there exists a nω-ary
operation ω ∈ Ω \ Γ such that r ∈ ω(R[m]Γ , . . . , R[m]Γ). In the first case

r(x1, . . . , xn) = ν(t1(x1, . . . , xn), . . . , s(x1, . . . , xn), . . . , tnν−1(x1, . . . , xn)),

for some terms t1, . . . , tnν−1 ∈ FV(X) and s ∈ R[m]Γ . By the induction hypothesis
we obtain

r(P1, . . . , Pn) = ν(t1(P1, . . . , Pn), . . . , s(P1, . . . , Pn), . . . , tnν−1(P1, . . . , Pn))

⊆ ν(FV(X), . . . , (ψ(R))[m]Γ , . . . , FV(X)) ⊆ (ψ(R))[m+1]Γ .

In the second case,

r(x1, . . . , xn) = ω(r1(x1, . . . , xn), . . . , rnω (x1, . . . , xn)),

for some terms r1, . . . , rnω ∈ R[m]Γ . Hence, also by the induction hypothesis,

r(P1, . . . , Pn) = ω(r1(P1, . . . , Pn), . . . , rnω
(P1, . . . , Pn))

⊆ ω((ψ(R))[m]Γ , . . . , (ψ(R))[m]Γ) ⊆ (ψ(R))[m+1]Γ ,

which completes the proof of the Claim.

Now assume that ⟨Q⟩Γ = ⟨R⟩Γ. For any q ∈ Q ⊆ ⟨Q⟩Γ = ⟨R⟩Γ there exist m ∈ N
and r ∈ R[m]Γ such that q = r. Hence for any subsets P1, . . . , Pn ∈ P<ω

>0 FV(X),

q(P1, . . . , Pn) ⊆ (ψ(R))[m]Γ . This implies

ψ(Q) =
∪
q∈Q

q(P1, . . . , Pn) ⊆ (ψ(R))[m]Γ ⊆ ⟨ψ(R)⟩Γ,

and consequently, ⟨ψ(Q)⟩Γ ⊆ ⟨ψ(R)⟩Γ. Analogously, we can show that ⟨ψ(R)⟩Γ ⊆
⟨ψ(Q)⟩Γ which finishes the proof. �

By Corollary (4.10) one immediately obtains that for any Γ ⊆ Ω the quotient
algebra ((P<ω

>0 M)αΓ ,Ω,∪) is isomorphic to the modal of finitely generated Γ-sinks
of (M,Ω).

Let VΩ be the variety of all Ω-modes. By results of A. Romanowska and J.D.H.
Smith ([19]) the modal ((P<ω

>0 FVΩ(X))α,Ω,∪) is free over a set X in the variety
M of all modals (M,Ω,+). As it was indicated in [14] very little is known about
varieties of modals. Only the variety of dissemilattices (see [10]) and the variety of
entropic modals (semilattice modes, see [8]) are well described.

By Theorem (4.16), for any subset Γ ⊆ Ω, each algebra ((P<ω
>0 FVΩ

(X))αΓ ,Ω,∪)
determines a non-trivial modal subvariety MΓ := HSP((SΓ(FVΩ(X)),Ω,+)) of the
variety M. Since the congruence αΩ is the greatest element in {αΓ | Γ ⊆ Ω}, then
by Corollary (4.12), none of the subvarieties MΓ is entropic (see Problem (5.4)).

5. Open problems

All congruences described in this paper are congruences on the extended power
algebras of modes, and hence also on the power algebras of modes. But in the proof
that the relation ρ is an idempotent replica congruence in [13] the assumption that
ρ is a congruence with respect to the operation ∪ was essential.

Problem 5.1. Is the relation ρ the idempotent replica congruence for the power
algebra (P>0M,Ω) of a mode (M,Ω)?
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This problem is closely related to the following problem which was partially
solved in [13].

Problem 5.2. [11, 14, 1] Let V be a variety of modes. It is known that the variety
generated by the class {(P>0M,Ω) | (M,Ω) ∈ V} satisfies the identities being a
result of identification of variables from the linear identities true in V. Is it true that
the variety generated by the class {(S(M),Ω) | (M,Ω) ∈ V} satisfies the identities
being consequences of the idempotence and the linear identities true in V?

Obviously, congruences considered here are not all idempotent congruences on
the (extended) power algebras of modes. It follows by general observation that if
γ is a congruence of the (extended) power algebra (P>0M,Ω,∪) of a mode (M,Ω),
then it is in ConI(P>0M) if and only if each coset is a subalgebra of (P>0M,Ω).
In this way we know how to find elements of ConI(P>0M).

Problem 5.3. Describe other congruences on the (extended) power algebras of
modes which give an idempotent factor.

Moreover, for each γ ∈ ConI(P>0M) its quotient is a modal (similarly as in
Corollary (4.10)). For detailed results on representation of modals (also by means
of congruences) we refer the reader to [12]. In [8] semilattice modes (in our nomen-
clature entropic modals) were thoroughly investigated. It raises the following.

Problem 5.4. Find the congruences on the extended power algebras of modes which
give as a quotient an entropic modal.
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