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Every strictly positive definite Hankel matrix H = {mk+l}i?l:0 gives rise to the
positive definite quadratic form on F C ¢2
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where F denotes the sequences with finitely many nonzero terms. By the Hamburger
theorem, there exists a finite measure u, with infinite support on the real line, such
that
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There are two entirely different cases, when the form () is closable:
1) suppp € (—1,1) or m, — 0, the result obtained by Yafaev

(2) The sequence {m,} is indeterminate, i.e. the measure g in (1) is not uniquely
determined. In particular Z m,, ' < oo, joint result with Berg .

For a measure satisfying (x), we study the operator A,, with D(A,) = F, given by
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As Q(f,9) = (A.f, Aug), the form @ is closable if and only if the operator A, is
closable.

We are going to study the properties of Zu, the closure of A,. In case (2) the
operator A, is a bijection from its domain onto L?*(u), for any N-extremal measure
i, i.e. a measure u for which the polynomials are dense in L?(u).

In case (1) the operator ZM may be surjective only when the set supp p is discrete
in (—1,1) and concentrated on a sequence of points x,, satisfying
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for a positive constant c.
The problem of surjectivity in case (1) is closely related to the Carleson theorem
on interpolation in H?(ID) space.



