DISCRETE MATHEMATICS 1 EXERCISES PART 2. COMBINATORIAL IDENTITIES. PARTITIONS.

- 1. Expand: a) $(1+x)^6$, b) $(1-x)^6$.
- 2. Evaluate a) $\binom{13}{6}$, b) $\binom{17}{8}$.
- 3. Prove that: $\binom{n+1}{3} + \binom{n-1}{3} = (n-1)^2$.
- 4. Show that:
 - b) $\sum_{k=0}^{n} \binom{n}{k} \binom{n-k}{m-k} = 2^m \binom{n}{m},$ b) $\sum_{k=1}^{n} k^2 \binom{n}{k} = n(n+1)2^{n-2}.$
- 5. By setting x equal to the appropriate values in the binomial expansion (or one of its derivates, etc.) evaluate:
 - a) $\sum_{k=0}^{n} 2^{k} {n \choose k},$ b) $\sum k = 1^{n} k 3^{k} {n \choose k}.$
- 6. Show by combinatorial arguments that:

a)
$$m\binom{m+n-1}{k-1} = \sum_{i=1}^{k} i\binom{m}{i}\binom{n}{k-i}$$

b) $\binom{2n}{2} = 2\binom{n}{2} + n^2$,
c) $\binom{n}{k} = \frac{n}{k}\binom{n-1}{k-1}$,
d) $\sum_{i=0}^{n}\binom{n}{i}i = n2^{n-1}$,
e) $\sum_{j=0}^{n}\binom{n}{j}\binom{n-j}{k-j} = \binom{n}{k}2^k$.

- 7. Evaluate
 - a) S(5,3),
 - b) S(7,5),
 - c) S(n, n-1),
 - d) S(n,2), where $n \ge 2$.
- 8. List all partitions of a 5-element set.
- 9. List all partitions of a 7-element set into 2 blocks.
- 10. Evaluate

a) B_5 , b) B_7 .

- 11. Evaluate
 - a) P(9,5),
 - b) P(11, 4),
 - c) P(13,8),
 - d) P(n,2), where $n \ge 2$.
- 12. Show that the number of partitions of an integer n > 0 into pairwise disjoint components is equal to the number of partitions of n into odd components.
- 13. Show that P(n,3) is equal to the number of partitions of 2n into 3 components such that each of them is smaller than n.
- 14. Show that P(2n, n) is equal to the number of all partitions of n.