PART 4. GENERATING FUNCTIONS. INDUCTION. RECURRENCES.

1. Find generating functions of the following sequences:
a) $a_{n}=\alpha^{n}, n=0,1,2, \ldots, \alpha \in R$,
b) $a_{n}=\left\{\begin{array}{ll}1, & n=0,1, \ldots, N, \\ 0, & n>N\end{array}\right.$,
c) $a_{n}=\left\{\begin{array}{ll}n+1, & n=0,1, \ldots, N, \\ 0, & n>N\end{array}\right.$,
d) $a_{n}=\alpha n, n=0,1,2, \ldots, \alpha \in R$,
e) $a_{n}=n^{2}, n=0,1,2, \ldots$,
f) $a_{n}=n \alpha^{n}, n=0,1,2, \ldots, \alpha \in R$.
2. Find a generating function $F(x)$ for the sequence A_{n} if the generating function $f(x)$ for a_{n} is given and:
a) $A_{n}=a_{n+1}, n=0,1,2, \ldots$,
b) $A_{n}=a_{n+k}, n=0,1,2, \ldots, k$ is a fixed positive integer,
c) $A_{n}=a_{n+1}-a_{n}, n=0,1,2, \ldots$,
d) $A_{n}=n \cdot a_{n}, n=0,1,2, \ldots$,
e) $A_{n}= \begin{cases}a_{n-1}, & n=1, \ldots, \\ 0, & n=0\end{cases}$
3. Use generating functions to find a_{n} if:
a) $a_{n}=6 n+a_{n-1}$, for $n \geq 1$ and $a_{0}=0$,
b) $a_{n+2}=2 a_{n+1}+3 a_{n}$ for $n \geq 0$ and $a_{0}=1, a_{1}=2$,
c) $a_{n}=-a_{n-1}+2 a_{n-2}$ for $n \geq 2$ and $a_{0}=1, a_{1}=2$.
4. Find a coefficient of x^{12} in
a) $\left(1+x^{3}+x^{6}+x^{9}+\ldots\right)^{7}$,
b) $\left(x+x^{2}+x^{3}+x^{4}\right)^{5}$,
c) $x^{2}(1-x)^{12}$.
5. Find a coefficient of x^{20} in $\left(x+x^{2}+x^{3}+x^{4}+x^{5}\right)\left(x^{2}+x^{3}+x^{4}+\ldots\right)^{5}$.
6. Use generating functions to find the number of ways to select 10 balls from a large pile of red, white and blue balls if:
a) the selection has at least 2 balls of each color,
b) the selection has at least 2 red balls.
7. Find the number of ways to select $1,2,3,4,5,6,7,8,9,10$ fruits from a pile of 3 apples, 5 oranges and 2 bananas. (Hint: Use generating functions.)
8. How many ways are there to divide 2 blue, 5 red and 9 white balls into equal unordered piles?
9. Show that:
a) $F_{n+m}=F_{n} F_{m}+F_{n-1} F_{m-1}$,
b) $\left(F_{n}\right)^{2}-F_{n+1} F_{n-1}=(-1)^{n}$,
where F_{n} are the Fibonacci numbers.
