
Computer Graphics — Task 5
3D Rendering

mgr inż. Paweł Aszklar
P.Aszklar@mini.pw.edu.pl

Warsaw, May 25, 2020

1 Assignment
Create a program with a graphical user interface for displaying in the

program window a render of a 3D scnene.
The application should allow the user to control a virtual camera which

will determine the point of view the scene is observed from. The minimum
requirement is to have a camera pointed at a centre of the scene that allow
the user to change the distance from the centre and rotate it around X and
Y axes.

Use of external libraries is only permitted for the purpose of drawing
points and lines on 2D raster and multiplication of matrices and vectors
(Warning! Initialisation of various transformation matrices should be im-
plemented by you!)

Additional implementation guidelines can be found on my website for
software rendering via triangular mesh rasterization (here) with additional
notes on texturing (here) or via ray-casting (here).

During the laboratories you will be assigned one of the scene variants
described below.

1. Textured cylinder. Place in the centre of the scene a triangular
mesh of a cylinder. Beside its position each vertex should be provided
with so called texture coordinates. A texture will be an external image
loaded by the program from a file, that will be overlaid on the object’s
surface. Texture coordinates describe a position on that image. While
drawing each triangle of the mesh projected on the screen, its interior
should be filled with a fragment of the texture image delimited by
texture coordinates of its vertices.
Special care needs to be taken when interpolating texture coordinates
along the interior of a projected triangle. Also, the cylinder mesh needs
to be generated by the program. Its parameters, such as base radius,
height or number of subdivisions, can be hardcoded but you should

1

https://pages.mini.pw.edu.pl/~aszklarp/cg/trimesh.pdf
https://pages.mini.pw.edu.pl/~aszklarp/cg/texturing.pdf
https://pages.mini.pw.edu.pl/~aszklarp/cg/raycasting.pdf


be able to easily change them. Additionally, to solve the visibility
problem, the back face culling algorithm should be employed.
Take a look at triangle mesh rasterization and texturing guidelines. In
the first document, however, you can ignore discussion about normal
vectors, lighting, Phong shading model and the z-buffer algorithm.

2. Textured sphere. Place in the centre of the scene a triangular mesh
of a sphere. Beside its position each vertex should be provided with so
called texture coordinates. A texture will be an external image loaded
by the program from a file, that will be overlaid on the object’s surface.
Texture coordinates describe a position on that image. While drawing
each triangle of the mesh projected on the screen, its interior should
be filled with a fragment of the texture image delimited by texture
coordinates of its vertices.
Special care needs to be taken when interpolating texture coordinates
along the interior of a projected triangle. Also, the sphere mesh needs
to be generated by the program. Its parameters, such as radius or
number of subdivisions, can be hardcoded but you should be able to
easily change them. Additionally, to solve the visibility problem, the
back face culling algorithm should be employed.
Take a look at triangle mesh rasterization and texturing guidelines. In
the first document, however, you can ignore discussion about normal
vectors, lighting, Phong shading model and the z-buffer algorithm.

3. Cylinder shading. Place in the centre of the scene a triangular
mesh of a cylinder. Beside its position each vertex should be provided
with a normal vector. In addition to that specify material coefficients
of the Phong illumination model for the object and a position of a
single white point light source. Those parameters can be hardcoded
but simple to change. When drawing each triangle projected on the
screen, for each pixel determine it’s corresponding position on object’s
surface, it’s normal vector and finally its colour calculated using Phong
illumination model.
Special care needs to be taken when interpolating 3D positions and
normal vectors along the interior of a projected triangle. Also, the
cylinder mesh needs to be generated by the program. Its parame-
ters, such as radius or number of subdivisions, can be hardcoded but
you should be able to easily change them. Additionally, to solve the
visibility problem, the back face culling algorithm should be employed.
Take a look at triangle mesh rasterization guidelines. You can, how-
ever, ignore discussion about the z-buffer algorithm.

4. Sphere shading. Place in the centre of the scene a triangular mesh
of a sphere. Beside its position each vertex should be provided with

2



a normal vector. In addition to that specify material coefficients of
the Phong illumination model for the object and a position of a single
white point light source. Those parameters can be hardcoded but sim-
ple to change. When drawing each triangle projected on the screen,
for each pixel determine it’s corresponding position on object’s sur-
face, it’s normal vector and finally its colour calculated using Phong
illumination model.
Special care needs to be taken when interpolating 3D positions and
normal vectors along the interior of a projected triangle. Also, the
sphere mesh needs to be generated by the program. Its parameters,
such as radius or number of subdivisions, can be hardcoded but you
should be able to easily change them. Additionally, to solve the visi-
bility problem, the back face culling algorithm should be employed.
Take a look at triangle mesh rasterization guidelines. You can, how-
ever, ignore discussion about the z-buffer algorithm.

5. Scene loading. Your program should load the objects to display in
the scene from a file. The file format should be of your design. Within
it for each object you should store information about:

• object type, which should be either: cylinder, sphere, cuboid or
a cone;

• object size, e.g. base radius and height for cone and cylinder,
radius for a sphere, edge lengths for a cuboid;

• desired mesh density, i.e. a number of subdivisions when approx-
imating the shape with a triangular mesh (not necessary for a
cuboid);

• position and orientation of the object in the scene expressed as a
single affine transformation matrix

Program should generate meshes for the objects and place them in the
scene according to the loaded information. When displaying the scene
you can draw object wireframes, i.e. it is enough to draw edges of
triangles of each mesh projected onto the screen.
Take a look at triangle mesh rasterization guidelines. The relevant
parts involve transformations and modelling, so you can ignore discus-
sion about lighting, normal vectors, z-buffer, back-face culling, triangle
filling and Phong illumination model.

6. Anaglyph stereoscopy. The scene in your program should con-
sist of several objects of different types (cylinders, cones, shperes and
cuboids). Scene itself can be hardcoded, but you should be able to
easily change number and types of objects and for each object:

3



• its size, e.g. base radius and height for cone and cylinder, radius
for a sphere, edge lengths for a cuboid;

• desired mesh density, i.e. a number of subdivisions when approx-
imating the shape with a triangular mesh (not necessary for a
cuboid);

• position and orientation of the object in the scene expressed as a
single affine transformation matrix

Program should generate meshes for the objects and place them in the
scene according that information. Draw the scene on a black back-
ground. Each object should be drawn as a wireframe, i.e. by only
drawing the edges of triangles from its mesh projected on the screen.
Each object, however, needs to be drawn twice using two different
stereoscopic projection matrices — one for the left and one for the
right eye. Assuming the lenses in anaglyph glasses are red on the
left and cyan on the right, when drawing a scene from the left eye’s
perspective you should only modify blue and green channels of the
output image. Conversely, when displaying the scene from the right
eye’s point of view, only the red channel of a pixel should be modified,
leaving the other two untouched.
Take a look at triangle mesh rasterization guidelines. The relevant
parts involve transformations and modelling, so you can ignore discus-
sion about lighting, normal vectors, z-buffer, back-face culling, triangle
filling and Phong illumination model.

7. Z-Buffer algorithm. Place near the centre of the scene two cubes,
slightly apart from each other. Their sizes, positions and orientations
(the latter two described as an affine transformation matrix) can be
hardcoded, but you should be able to easily change them. Additionally
each of the faces of both cubes should have unique colour. When draw-
ing mesh triangles projected on the screen, you should fill them with
the colour of their respective faces. To solve the visibility problem,
you should implement the Z-Buffer algorithm.
Special care needs to be taken when interpolating 3D positions on the
surface of objects corresponding to the pixels on the screen inside each
projected triangle.
Take a look at triangle mesh rasterization guidelines.You can, however,
ignore discussion about normal vectors, lighting, Phong shading model
and back-face culling.

8. Spheres ray-casting. Your scene should contain several spheres de-
scribed by their positions and radii. Additionally place a single white
point light and define for each sphere its colour and material coeffi-
cients according to Phong illumination model. The scene should be

4



drawn using ray-casting, i.e. by casting a ray through each pixel of
the output image from the camera position. The colour of each pixel
should be determined by the closest intersection of its ray with any
sphere. Based on the position of the intersection, vector normal to the
sphere surface at that point, colour and material coefficients of said
sphere, calculate the output colour using Phong illumination model.
Take a look at ray-casting rendering guidelines for more information.

5


	Assignment

