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Abstract. For quasivarieties of algebras, we consider the property of having definable

relative principal subcongruences, a generalization of the concepts of definable relative

principal congruences and definable principal subcongruences. We prove that a quasi-

variety of algebras with definable relative principal subcongruences has a finite quasi-

equational basis if and only if the class of its relative (finitely) subdirectly irreducible al-

gebras is strictly elementary. Since a finitely generated relatively congruence-distributive

quasivariety has definable relative principal subcongruences, we get a new proof of the re-

sult due to D. Pigozzi: a finitely generated relatively congruence-distributive quasivariety

has a finite quasi-equational basis.
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1. Introduction

In [2] K. A. Baker and J. Wang introduced the notion of definable principal
subcongruences (DPSC). With the aid of it, they provided a new proof of cel-
ebrated Baker’s theorem [1]: each finitely generated congruence-distributive
variety has finite equational basis. (All algebras and classes of algebras con-
sidered in this paper are assumed to be in a finite language.) The novelty
of this proof lies not only in its shortness and exceptional elegance, but also
in the fact that it does not relay on the existence of Jónsson’s terms [9].
Therefore it is plausible that the DPSC technique may be carried over to a
more general setting. The aim of this article is to demonstrate that it is the
case indeed. We introduce the notion of definable relative principal subcon-
gruences (DRPSC) and employ it to provide a new proof of the following
generalization of Baker’s theorem obtained by D. Pigozzi [19].

Theorem 1. A finitely generated relatively congruence-distributive quasiva-
riety has a finite quasi-equational basis.

Our main contribution is the following theorem.
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Theorem 2. Let Q be a quasivariety with DRPSC and let QSI (QFSI) be
the class of (finitely) Q-subdirectly irreducible algebras. Then the following
conditions are equivalent

¶ Q has a finite quasi-equational basis;

· QSI is strictly elementary;

¸ QFSI is strictly elementary.

Several results preceded our Theorem 2. R. McKenzie [13] proved that a
variety V with definable principal congruences (DPC) which is residually less
than n, for some finite n, has finite equational basis. This was generalized by
B. Jónsson and K. A. Baker [10] who showed that a variety V with DPC and
VSI (VFSI) strictly elementary has finite equational basis. The extension of
this theorem to the quasivariety case by J. Czelakowski, W. Dziobiak [5] and
the first author [16] followed. Finally, K. A. Baker and J. Wang proved [2]
that a variety V with DPSC and VSI (VFSI) strictly elementary has finite
equational basis.

The new proof of Baker’s theorem presented in [2] is based on the above
mentioned result of K. A. Baker and J. Wang, and the fact that each finitely
generated congruence-distributive variety has DPSC [2, Theorem 2]. In order
to obtain a proof of Pigozzi’s theorem one can easily carry over the latter
fact to the quasivariety case (Proposition 7) and use our Theorem 2.

Pigozzi’s theorem was already reproved by W. Dziobiak in [6] and by
M. Maróti, R. McKenzie in [12]. But, according to our knowledge, the proof
presented here is the shortest one, as is the proof of Baker’s theorem given
in [2]. However, both these proofs are non-constructive.

The results more general than Pigozzi’s theorem are known nowadays.
The first author of this article proved in [17] that a locally finite relatively
congruence-distributive quasivariety Q has a finite quasi-equational basis
provided the class QFSI is strictly elementary. W. Dziobiak, M. Maróti,
R. McKenzie and the first author proved [7] that each finitely generated
relatively congruence-meet-semidistributive quasivariety has a finite quasi-
equational basis. It is a quasivariety version of Willard’s theorem [20]. Fi-
nally, K. Pa lasińska proved in [18] that a finitely generated protoalgebraic
filter-distributive strict universal Horn class is finitely axiomatizable.

2. Toolbox

We briefly recall basic facts from quasivariety theory we will need. A stan-
dard book about quasivarieties is [8] and about universal algebra are [4, 14].
One may also consult the classical position [11].
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We assume that all considered algebras are in the same finite language.
A quasivariety Q is a class of algebras defined by a set Σ of quasi-identities
(strict universal Horn sentences). The set Σ is called a quasi-equational basis
of Q. Recall that a class is strictly elementary, or finitely axiomatizable, if it
may be defined by a single sentence. Notice that a quasivariety Q has a finite
quasi-equational basis if and only if Q is strictly elementary. The smallest
quasivariety Q containing a given class G is SPPU(G), where P denotes
the product class operator, PU denotes the ultraproduct class operator, and
S denotes the subalgebra class operator [8, Corollary 2.3.4]. If G is a finite
family of finite algebras, then Q = SP(G), and every such Q is called finitely
generated.

Let Q be a quasivariety. A congruence α on an algebra A is called a
Q-congruence provided A/α ∈ Q. Note that A ∈ Q if and only if the equality
relation 0A on A is a Q-congruence. The set ConQ(A) of all Q-congruences
of A forms an algebraic lattice which is a meet-subsemilattice of Con(A)
[8, Corollary 1.4.11]. We use the symbol ∨Q for the lattice join in ConQ(A).

A nontrivial algebra S ∈ Q is Q-subdirectly irreducible if 0S is a com-
pletely meet irreducible in ConQ(A), and S is finitely Q-subdirectly irre-
ducible if 0S is a meet irreducible in ConQ(A). Let us denote the class of
all (finitely) Q-subdirectly irreducible algebras by QSI (QFSI). Note that if
Q = SP(G), then [8, Proposition 3.1.6]

QSI ⊆ S(G). (1)

In an algebraic lattice each element is a meet of completely meet-irreducible
elements. For A ∈ Q the lattice ConQ(A) is algebraic. Thus we obtain
[8, Theorem 3.1.1]

Q = PS(QSI), (2)

where PS denotes the subdirect product class operator.

Let A be an algebra and H ⊆ A2. Then there exists the least Q-con-
gruence containing H and we denote it by θAQ(H). Note that θAQ(−) is the
algebraic closure operator associated to the lattice ConQ(A). If H consists
of one element (a, b) we simply write θAQ(a, b) and call such congruence a
principal Q-congruence or a relative principal congruence. Notice that for
α ∈ ConQ(A) and a, b, c, d ∈ A we have the following useful equivalence

(c, d) ∈ α ∨Q θAQ(a, b) ⇔ (c/α, d/α) ∈ θ
A/α
Q (a/α, b/α). (3)
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3. DRPSC

An existential positive formula Γ(x, y, u, v) is an Q-congruence formula if

Q |= (∀x, u, v)[Γ(u, v, x, x) → u ≈ v] (4)

[8, Subsection 1.4.4]. For example ux ≈ vy ∨ xu ≈ yv is a congruence
formula for the quasivariety of cancellative groupoids. The importance of
Q-congruence formulas follows from the following fact [8, Proposition 1.4.13].

Proposition 3. Let Q be a quasivariety and a, b, c, d ∈ A ∈ Q. Then
(c, d) ∈ θAQ(a, b) if and only if there exists a Q-congruence formula Γ such
that A |= Γ(c, d, a, b).

Let a, b ∈ A ∈ Q. We say that a Q-congruence formula Γ defines θAQ(a, b)
if

θAQ(a, b) = {(c, d) ∈ A2 | A |= Γ(c, d, a, b)}.

We say that Q has definable relative principal congruences (DRPC) if there
exists a Q-congruence formula defining all principal Q-congruences in Q.
In the variety case this reduces to having definable principal congruences
(DPC). A quasivariety Q has definable relative principal subcongruences
(DRPSC) if there exists a Q congruence formula Γ such that for each pair
a, b of distinct elements of A ∈ Q there exists a pair c, d ∈ A of distinct
elements such that

A |= Γ(c, d, a, b) and θAQ(c, d) = {(e, f) | A |= Γ(e, f, c, d)}.

Similarly as above, this reduces to having definable principal subcongruences
(DPSC) in the variety case. The property of having DRPSC is more common
than of having DRPC (Proposition 7 and Remark 8). On the other hand, it
still allows to prove the finite axiomability theorem (Theorem 2).

4. Proof of Theorem 2

We say that a quasivariety Q ⊆ U is finitely axiomatizable relative to U if
there exists a finitely axiomatizable quasivariety R such that Q = R ∩ U .
Equivalently, there is a finite set Σ of quasi-identities such that, for every
algebra A ∈ U , A ∈ Q if and only if A |= Σ. Our first step is to show that
each quasivariety Q with DRPSC is finitely axiomatizable relative to the
variety it generates. This means that Q has a quasi-equational basis of the
form Σ∪ I, where Σ is finite and I is a set of identities (Lemma 5). For this
we need the following lemma.
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Lemma 4 (cf. [16]). Let Q be a subquasivariety of a quasivariety R. Assume
that Q and R generate the same variety V. If θAQ(a, b) = θAR(a, b) for all
a, b ∈ A ∈ Q, then Q = R.

Proof. Let A ∈ Q. Note first that if α = θAR({(a1, b1), . . . , (an, bn)}) is a
finitely generated R-congruence of A, then α is a Q-congruence. Indeed, if
n = 0, then α = 0A is a trivial congruence. Let n > 0 and assume that
β = θAR({(a1, b1), . . . , (an−1, bn−1)}) is a Q-congruence. Then by (3) and the
assumption

α = β ∨R θAR(an, bn)

= {(c, d) ∈ A2 | (c/β, d/β) ∈ θ
A/β
R (an/β, bn/β)}

= {(c, d) ∈ A2 | (c/β, d/β) ∈ θ
A/β
Q (an/β, bn/β)}

= β ∨Q θAQ(an, bn)

is also a Q-congruence. Thus, for every A ∈ Q and every finite subset H of
A2 we have θAQ(H) = θAR(H).

Now let C ∈ R. Since R generates V, there exists a free algebra F in
V and an R-congruence γ on F such that C is isomorphic to F/γ. Since
Q generates V, F ∈ Q. Obviously, γ = θFR(γ) ⊆ θFQ(γ). Since θFQ(−) is

an algebraic closure operator on 2F
2
, it follows from what we have estab-

lished above that θFQ(γ) ⊆ θFR(γ). Hence γ = θFQ(γ), proving that γ is a
Q-congruence and C ∈ Q.

Lemma 5. Let Q be a quasivariety with DRPSC. Then Q is finitely axiom-
atizable relative to the variety V it generates.

Proof. Let Γ be a Q-congruence formula witnessing DRPSC for Q. By the
condition (4) and compactness theorem there is a finitely based quasivariety
R containing Q such that Γ is also an R-congruence formula. We will show
that Q = V ∩ R. Let A ∈ Q. By Lemma 4, it is enough to show that
θAQ(a, b) = θAV∩R(a, b) for all a, b ∈ A. The inclusion θAR∩V(a, b) ⊆ θAQ(a, b)
is obvious. In order to prove the inverse inclusion we construct a sequence
(ακ)κ<ϱ, where ϱ is an ordinal, of congruences with the following properties.

� |ConQ(A)| < |{κ | κ < ϱ}|;
� if λ 6 κ < ϱ, then αλ ⊆ ακ;

� for κ < ϱ, ακ is a Q-congruence;

� for κ < ϱ, ακ ⊆ θAR(a, b);

� for κ < ϱ, ακ+1 = ακ implies ακ = θAQ(a, b).
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Note that if
∪
ακ ̸= θAQ(a, b), then the congruences ακ form a chain in

ConQ(A) of cardinality greater than |ConQ(A)|, what is impossible. Thus

θAQ(a, b) =
∪
ακ ⊆ θAR(a, b) = θAR∩V(a, b).

We construct (ακ)κ<ϱ recursively. First put α0 = 0A. Now let κ = λ+ 1 < ϱ
be a successor ordinal and assume that αλ is already defined. If (a, b) ∈ αλ,
let ακ = αλ. Otherwise, because A/αλ ∈ Q and Γ witnesses DRPSC for Q,
there exists a pair (c, d) ̸∈ αλ of elements of A such that

A/αλ |= Γ(c/αλ, d/αλ, a/αλ, b/αλ) (5)

and

θ
A/αλ

Q (c/αλ, d/αλ) = {(e/αλ, f/αλ) | A/αλ |= Γ(e/αλ, f/αλ, c/αλ, d/αλ)}.
(6)

We define
ακ = αλ ∨Q θAQ(c, d).

We claim that ακ = αλ ∨R θAR(c, d).
Indeed, by (3)

ακ = {(e, f) ∈ A2 | (e/αλ, f/αλ) ∈ θ
A/αλ

Q (c/αλ, d/αλ)},

and by (6)

ακ = {(e, f) ∈ A2 | A/αλ |= Γ(e/αλ, f/αλ, c/αλ, d/αλ)}.

But Γ is an R-congruence formula and A/αλ ∈ R, hence by Proposition 3
and (3)

ακ ⊆ {(e, f) ∈ A2 | (e/αλ, f/αλ) ∈ θ
A/αλ

R (c/αλ, d/αλ)} = αλ ∨R θAR(c, d).

This proves the claim.
Similarly by Proposition 3 and (3), (5) yields (c, d) ∈ αλ ∨R θAR(a, b).

This together with αλ ⊆ θAR(a, b) imply that (c, d) ∈ θAR(a, b). Hence, by the
claim, ακ ⊆ θAR(a, b).

It remains to define ακ when κ is a limit ordinal and αλ is defined for all
ordinals λ < κ. It may be done by putting ακ =

∪
λ<κ αλ.

Proof of Theorem 2.
¶ ⇒ ·. Let Γ be a Q-congruence formula witnessing DRPSC for Q. Let
Γ2(r, s, x, y) be the abbreviation of (∃u, v)[Γ(u, v, x, y)∧Γ(r, s, u, v)] and put

ψ = (∃r, s)
[
r ̸≈ s ∧ (∀x, y)

[
(x ̸≈ y → Γ2(r, s, x, y)

]]
. (7)
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Observe that S ∈ Q is Q-subdirectly irreducible if and only if S |= ψ. Thus
if Λ is a finite quasi-equational basis of Q, then Λ ∪ {ψ} defines QSI and
this class is strictly elementary.

· ⇒ ¶. Let I be a set of identities and Σ be a set of quasi-identities such
that Σ∪ I defines Q. By Lemma 5, we may assume that Σ is a finite. For a
quasi-identity

σ = (∀x̄)

[[ ∧
i6n

pi(x̄) ≈ qi(x̄)
]
→ p(x̄) ≈ q(x̄)

]

let

δσ(u, v) = (∀x̄)

[[ ∧
i6n

Γ(pi(x̄), qi(x̄), u, v)
]
→ Γ(p(x̄), q(x̄), u, v)

]
.

Put

δ(u, v) = Γ(u, v, u, v) ∧
∧

σ∈Σ∪Eq

δσ(u, v),

where Eq is the set of axioms for the equality relation. Observe that
A |= δ(c, d) if and only if β =

{
(e, f) ∈ A2 | A |= Γ(e, f, c, d)

}
is a con-

gruence containing (c, d) and A/β |= Σ. If additionally A |= I, A |= δ(c, d) if
and only if β is a Q-congruence containing (c, d). In particular, when A ∈ Q,
A |= δ(c, d) if and only if Γ defines θAQ(c, d).

Now let

φ = (∀x, y)
[
x ̸≈ y →

[
(∃u, v)[u ̸≈ v ∧ Γ(u, v, x, y) ∧ δ(u, v)]

]]
.

The consideration given above and the fact that Γ witnesses DRPSC for Q
yield Q |= φ. Thus, by the compactness theorem, there is a finite subset I0
of I such that

Σ ∪ I0 |= φ. (8)

It is worth to mention that the quasivariety defined by Σ∪ I0 does not need
to have DRPSC. This is because Γ does not need to be a congruence formula
relative to it.

Since QSI is strictly elementary, there is a sentence χ defining QSI .
Whence Σ∪I ∪{ψ} |= χ, where ψ is as in (7). By the compactness theorem,
there is a finite set I1 ⊆ I such that

Σ ∪ I1 ∪ {ψ} |= χ. (9)
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Let R be the quasivariety defined by Σ∪I0∪I1. We show that RSI ⊆ QSI .
Then by (2), R ⊆ Q. And because the inverse inclusion holds, R = Q. So let
S ∈ RSI and choose distinct g, h ∈ S such that (g, h) belongs to each nonzero
R-congruence on S. By (8) for arbitrary distinct a, b ∈ S there are distinct
c, d ∈ S such that S |= Γ(c, d, a, b) and γ = {(e, f) ∈ S2 : S |= Γ(e, f, c, d)}
is an R-congruence containing (c, d). In particular γ is nontrivial, hence
(g, h) ∈ γ. This yields

S |= g ̸≈ h ∧ (∀x, y)
[
(x ̸≈ y → Γ2(g, h, x, y)

]
,

where Γ2 is defined as in the proof of ¶ ⇒ ·. We obtained that S |= ψ. By
(9), S |= χ, and thus S ∈ QSI .

¶ ⇔ ¸. One may proceed similarly. Just instead of ψ from the proof of
implication ¶ ⇒ · the sentence

(∀x, y, u, v)

[
[x ̸≈ y ∧ u ̸≈ v] →

[
(∃r, s)[r ̸≈ s ∧ Γ2(r, s, x, y) ∧ Γ2(r, s, u, v)]

]]
should be used.

5. Relative congruence-distributive quasivarieties

A quasivariety Q is relatively congruence-distributive if the lattice ConQ(A)
is distributive for all A ∈ Q. A variety is congruence-distributive if it is
relatively congruence-distributive. The proof by K. A. Baker and J. Wang
[2] that a congruence-distributive finitely generated variety has DPSC carries
over easily to the quasivariety case. However, for the sake of completeness,
we provide here a detailed exposition for the later case.

Lemma 6. Let Q be a quasivariety and assume that there exists a natural
number N with the following property: For each algebra A ∈ Q and each pair
of distinct elements a, b ∈ A there exists a pair of distinct elements c, d ∈ A
such that

� there exits a subalgebra B of A with at most N elements such that
a, b, c, d ∈ B and (c, d) ∈ θBQ(a, b), and

� if (e, f) ∈ θAQ(c, d), then there exists a subalgebra C of A with at most N
elements such that c, d, e, f ∈ C and (c, d) ∈ θCQ(a, b).

Then Q has DRPSC.
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Proof. Proposition 3 and the fact that a nonempty disjunction of Q-con-
gruence formulas is also a Q-congruence formula yield that for each finite
family of finite algebras G there exists a Q-congruence formula defining prin-
cipal Q-congruences in G. In particular, there exists a Q-congruence formula
defining Q-congruences in all members of Q of cardinality not greater than
N . By the condition in the proposition, Γ witnesses DRPSC for Q.

Proposition 7. A finitely generated relatively congruence-distributive qua-
sivariety Q has DRPSC.

Proof. By (1) there exists a finite bound M for the cardinality of the
Q-subdirectly irreducible algebras. Let N be the cardinality of the free
Q-algebra of rank M + 2. Because Q is finitely generated, N is finite.
Moreover, each Q-algebra with at most M+2 generators has cardinality not
greater than N . We argue that N satisfies the condition of Lemma 6.

Consider an algebra A ∈ Q and a pair of distinct elements a, b ∈ A. By
(2) there exists a family of Q-congruences ηi ∈ ConQ(A), i ∈ I, such that∩

i∈I ηi = 0A and all Si = A/ηi are Q-subdirectly irreducible. We choose
j ∈ I so that |Sj | is as large as possible subject to (a, b) ̸∈ ηj . Let B be a
subalgebra of A such that a, b ∈ B and |B/ηBj | = |Sj |, where ηDi denotes

ηi ∩ D2. This condition means that B contains at least one representative
of each ηj class. Because |Sj | 6M , we may assume that B is M generated,
and hence |B| 6 N . Since Sj is Q-subdirectly irreducible, ηBj ̸= B2 and ηBj
is meet irreducible in ConQ(B). Thus, by distributivity of ConQ(B), there
exists α ∈ ConQ(B) such that α ̸6 ηBj and for arbitrary β ∈ ConQ(B) either

β 6 ηBj or α 6 β. Moreover, α is join-irreducible. Hence there is a pair of

distinct element c, d ∈ B such that α = θBQ(c, d) and(
∀β ∈ ConQ(B)

) [
β 6 ηBj xor θBQ(c, d) 6 β

]
. (10)

By the choice of j, (a, b) ̸∈ ηBj . Thus by (10), (c, d) ∈ θBQ(a, b).

Now consider a pair e, f ∈ A such that (e, f) ∈ θAQ(c, d). Let C be a
subalgebra of A generated by B ∪ {e, f}. Note that C is M + 2 generated,
and hence |C| 6 N . In order to finish the proof we need to verify that
(e, f) ∈ θCQ(c, d).

The finiteness of C yields that the family {ηCi | i ∈ I} is finite. Therefore,
by distributivity,

θCQ(c, d) = θCQ(c, d) ∨Q 0C = θCQ(c, d) ∨Q
∩
i∈I

ηCi =
∩
i∈I

(
θCQ(c, d) ∨Q ηCi

)
.
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Thus it is enough to show that (e, f) ∈ θCQ(c, d)∨QηCi for all i ∈ I. There are
two cases. If (c, d) ∈ ηi, then obviously (e, f) ∈ ηCi . Assume that (c, d) ̸∈ ηi.
Then (a, b) ̸∈ ηi. Moreover, (10) yields ηBi 6 ηBj . Thus, by the choice of j
and B,

|Si| 6 |Sj | = |B/ηBj | 6 |B/ηBi | 6 |C/ηCi | 6 |A/ηi| = |Si|.

Therefore the mapping C/ηCi → A/ηi, given by x/ηCi 7→ x/ηj , is an isomor-
phism. Consequently by (3)

(e, f) ∈ θAQ(c, d) ⇒ (e/ηi, f/ηi) ∈ θ
A/ηi
Q (c/ηi, d/ηi)

⇔ (e/ηCi , f/η
C
i ) ∈ θ

C/ηCi
Q (c/ηCi , d/η

C
i )

⇔ (e, f) ∈ θCQ(c, d) ∨Q ηCi .

Remark 8. As in the variety case, a finitely generated relative-congruence
quasivariety does not need to have DRPC. Let L be a finite non-distributive
lattice and put V = HSP(L), where H denotes the homomorphic im-
age class operator. Jónsson’s theorem [9, Corollary 3.4.] and congruence-
distributivity of V yields VSI ⊆ HS(L), hence V is finitely generated as
a quasivariety. But R. McKenzie proved [13, Theorem 23] that the only
nontrivial variety of lattices with DPC is the variety of distributive lattices.

Proof of Pigozzi’s theorem. Combine Theorem 2 and Proposition 7.

6. Examples

This section contains two examples, each providing a negative answer to
questions emerging naturally in the context of our work.

Example 9. There is a finitely generated quasivariety Q without DRPSC
such that the variety H(Q) generated by Q has DPSC. Let L be a finite
lattice with SP(L) not finitely based. For examples of such lattices see [3]
or [8, Sec. 6.2]. By Theorem 2, SP(L) does not have DRPSC. Still HSP(L)
is congruence-distributive. Thus, by Theorem 2 in [2], it has DPSC.

Example 10. There is a finitely generated quasivariety Q with DRPSC such
that the variety H(Q) generated by Q does not have DPSC. Let A = S3∪{0},
where (S3, ·, 1) is the group of permutations of a three elements set and
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0 ̸∈ S3. We extend the multiplication by a0 = 0a = a. We define two new
operations

a+ b =

{
0 if a = b = 0,

1 otherwise;
eq(a, b) =

{
1 if a = b,

0 otherwise.

Then A = (A, ·, 1, 0,+, eq) is an equality-test algebra. It was shown in [19]
that such algebras generate relatively congruence-distributive quasivarieties
(see as well [15]). Thus SP(A) is relatively congruence-distributive quasi-
variety and by Proposition 7, it has DRPSC. Let α be the congruence of A
with one nontrivial class {0, 1}. Then A/α is term equivalent to the group
S3 and by Theorem 3 in [2], HSP(A/α) does not have DPSC. Thus HSP(A)
does not have DPSC.
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