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Abstract. In this paper we describe coproducts in varieties of affine mod-
ules. We prove that coproducts with described structure characterize, up to
equivalence, varieties of affine modules.

1. Introduction

Any variety of algebras can be considered as a category with algebras as objects
and homomorphisms as morphisms. Such category has coproducts. And it is inter-
esting to know their detailed structure. This knowledge is relevant for a description
of free algebras in any variety V of algebras. It is well-known that the coproduct
of free V -algebras XiV over sets Xi, for i ∈ I, is a free V -algebra over the disjoint
union of the sets Xi. Thus knowledge of ”small” free algebras, for instance over
one or two free generators, and a good structural description of coproducts, can
provide a good description of any free V -algebra. This type of consideration was
undertaken by Bela Csákány in [1], who has shown that under certain general con-
ditions, the coproduct of any two algebras in a given variety V coincides with their
product iff V is equivalent to a variety of semimodules. In this note we are inter-
ested in varieties in which the coproduct of any two algebras A and B is isomorphic
to A×B×2V , where 2V is a free V -algebra over two free generators. Such types of
coproducts characterize varieties of affine modules. We show that a variety V has
coproducts of this type iff it is equivalent to a variety of affine modules. Varieties
equivalent to varieties of affine modules were characterized by Bela Csákány [2] as
idempotent, regular and hamiltonian varieties. Note that the existence of certain
types of coproducts (so-called free products) of some families of algebras in a given
variety was shown firstly by R. Sikorski [6]. Note also that in fact any variety of
algebras considered as a category is also cocomplete.

At first we recall some necessary concepts and notation. Let A,B, C denote
algebras in a variety V , or briefly V -algebras. The coproduct in V of the V -algebras
A and B is a V -algebra C together with homomorphisms ρA : A → C and ρB :
B → C such that for any two homomorphisms fA : A → D and fB : B → D
into a V -algebra D, there is exactly one homomorphism f : C → D such that
f ◦ ρA = ρAf = fA and f ◦ ρB = ρBf = fB . The coproduct C is denoted by
A tV B. Homomorphisms ρA and ρB are called insertions.

An algebra (A, Ω) is idempotent, if for each ω ∈ Ω, it satisfies the identity

x . . . xω = x.
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A Mal’cev algebra A, i.e. an algebra admitting a Mal’cev term operation P , is
central if the diagonal D = {(a, a) | a ∈ A} is a class of a certain congruence of A2.
Equivalently, A is central if it satisfies the identities

(C) x1y1z1P . . . xnynznP ω = x1 . . . xnω y1 . . . ynω z1 . . . znω P

for each ω ∈ Ω. A variety V is idempotent (central) if each V -algebra is idempotent
(central).

Two algebras (A, Ω) and (A, Ψ), with the same universe, are equivalent if they
have the same term operations. Two varieties V and W , possibly of different types,
are equivalent if they have the same derived operations. (Equivalently, V and W are
equivalent if the free algebras NV and NW over countably infinite set of generators,
are isomorphic to equivalent algebras.) Note that the notion of equivalence used
here is stronger then categorical equivalence. See [5] or [4] for details. An algebra
(A, Ψ) is a reduct of (A, Ω), if Ψ is a subset of the set of term operations of (A, Ω).

By an affine module over a ringa) R we understand the reduct (A,R, P ) of a
module (A,+, R), where P is the Mal’cev operation xyzP = x− y + z and R is the
set of operations xyr = x(1 − r) + yr. It is known that the operations R and P
generate all idempotent term operations of each module (A, +, R). The variety of
modules over R is denoted by ModR. Also the class of affine modules over R forms
a variety. It is denoted by AffR. It can be characterized similarly as in the case
when the ring R is commutative (see [5, Section 6.3]).

Theorem 1. The class AffR is a central idempotent and Mal’cev variety. The
free AffR-algebra on two generators (0 and 1) has the structure of the ring R. The
variety AffR is defined by the central, idempotent and Mal’cev identities and for
all p, q, r ∈ R, the following additional ones:

xy0 = x = yx1,

xyp xyq r = xy pqr,

xyp xyq xyr P = xy pqrP .

Proof. It is analogous to the proof presented in [5, Section 6.3] in the case the ring
R is commutative. One just has to replace entropicity for centrality. ¤

The next Theorem will be used later. It is also an easy generalization of corre-
sponding theorems in [5, Section 6.3].

Theorem 2. A variety V is equivalent to the variety AffR of affine modules over
a ring R iff it is a central idempotent and Mal’cev variety.

2. Coproducts in central idempotent and
Mal’cev varieties

In this section we describe coproducts in central idempotent and Mal’cev vari-
eties.

For a variety V , let 2V denote the free V -algebra over a two element set of free
generators denoted by 0 and 1.

a)In this paper the word ring means (not necessarily commutative) ring with identity.
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Proposition 3. Let V be an idempotent central and Mal’cev variety. Then for any
two V -algebras A and B, the algebra C = A×B× 2V with maps ρA : A → C; a 7→
(a, d, 0) and ρB : B → C; b 7→ (c, b, 1), where c is any fixed element in A and d is
any fixed element in B, is a coproduct of A and B in V .

Proof. Since V is idempotent, the maps ρA and ρB are homomorphisms. We will
show that the set X = AρA ∪ BρB generates C. Let D be the subalgebra of C
generated by X. First note that, by idempotency, {c}×{d}×2V ⊆ D. Furthermore,
by Mal’cev identities, (a, d, u) = (a, d, 0)(c, d, 0)(c, d, u) P . Hence A×{d}×2V ⊆ D.
Similar argument shows that {c} × B × 2V ⊆ D. And finally, since every element
of C can be written as (a, b, u) = (a, d, u)(c, d, u)(c, b, u) P , it follows that C ⊆ D.
Hence C and D coincide.

It remains to show that for any homomorphisms f : A → E and g : B → E into
a V -algebra E, there exists a homomorphism h : C → E, such that ρA h = f and
ρB h = g.

First note that every element of C can be written as

(a, b, u) = (a1, d, 0) . . . (an, d, 0)(c, b1, 1) . . . (c, bm, 1) w

= (a1 . . . anc . . . c w, d . . . db1 . . . bm w, 0 . . . 01 . . . 1w),

where w is an (n + m)-ary term operation.
Then define a map h to be the following assignment

(a1 . . . anc . . . c w, d . . . db1 . . . bm w, 0 . . . 01 . . . 1w)
−↓

a1f . . . anfb1g . . . bmg w

We will show that h is well defined. Assume therefore that

a1 . . . anc . . . c w = a′1 . . . a′kc . . . c v,

d . . . db1 . . . bm w = d . . . db′1 . . . b′l v,

0 . . . 01 . . . 1w = 0 . . . 01 . . . 1v.

The third equality means that the identity x . . . xy . . . y w = x . . . xy . . . y v, where
x occurs exactly n times on the left, k times on the right hand side and y occurs m
times on the left, l times on the right hand side, holds in V . The equalities above
imply the following:

a1f . . . anfb1g . . . bmg w

= (a1f dg dg P ) . . . (anf dg dg P )(cf cf b1g P ) . . . (cf cf bmg P ) w

= (a1 . . . anc . . . c w f)(dg . . . dg cf . . . cf w)(d . . . db1 . . . bm w g) P

= (a′1 . . . a′kc . . . c v f)(dg . . . dg cf . . . cf v)(d . . . db′1 . . . b′l v g) P

= c1f . . . ckfd1g . . . dlg v ,

and this is what we wanted to show.
To finish the proof one should show that the map h is a homomorphism. This

is quite standard and is left to the reader. ¤
Remark 4. There are at least two other possible proofs of Proposition 3. The first
one is based on the fact that each central idempotent Mal’cev algebra is regular and
hamiltonian. This approach was used in [8]. The second works nicely for varieties
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AffR and is based on the Sikorski’s construction of coproducts, described in [6].
However, we believe that the proof presented here is the easiest and the most direct
one.

3. A characterization of AffR

Here is the main result of the paper.

Theorem 5. For any variety V the following conditions are equivalent:

(1) V is equivalent to a variety of affine modules;
(2) V is a central idempotent and Mal’cev variety;
(3) V has coproducts of the form described in Proposition 3;
(4) For each natural number n the algebra (2V )n is free over exactly n + 1 free

generators: (0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

Proof. Theorem 2 shows the equivalence (1 ⇔ 2).
Proposition 3 gives the implication (2 ⇒ 3).
Now we will focus our attention on the implication (3 ⇒ 4). The proof is by

induction on n. First we show that the variety V is idempotent i.e. the algebra
1V has exactly one element and thus is isomorphic to (2V )0. If π : A×B × 2V →
2V is the third projection, then AρAπ = {0} is a one-element subalgebra of 2V .
And hence 1V = {0}. Then, by remarks in the introduction, (n + 1)V ∼= 1V tV

nV ∼= 1V × nV × 2V ∼= 1V × (2V )(n−1) × 2V ∼= (2V )n. The elements (0, . . . , 0),
(1, 0, . . . , 0), . . . , (0, . . . , 1) are the free generators of (2V )n.

Now we prove the implication (4 ⇒ 2). Since 1V = {0}, the variety V is
idempotent. Consider the free algebra (2V )2 with the free generators x = (1, 0),
y = (0, 0), z = (0, 1). Let P be a term operation, such that xyzP = (1, 1). Define
the map f : {x, y, z} → (2V )2; x, y 7→ y; z 7→ z. Since (2V )2 is free, the map f
extends to the homomorphism f : (2V )2 → (2V )2; (a, b) 7→ (0, b). It follows that

xxzP = xfyfzf P = xyzP f = (1, 1)f = z,

and similarly xzzP = x. Thus P is a Mal’cev term and V is a Mal’cev variety. Now
consider the free algebra (2V )3 with the free generators x = (1, 0, 0), y = (0, 0, 0),
z = (0, 1, 0) and t = (0, 0, 1). Then

xyzP t y P = (1, 0, 0)(0, 0, 0)(0, 1, 0)P (0, 0, 1) (0, 0, 0)P

= (1, 1, 0)(0, 0, 1)(0, 0, 0)P = (1, 1, 010P )
= (1, 0, 0)(0, 0, 1)(0, 1, 0)P = xtzP.

Next take the free algebra nV × nV with the free generators xi = (i, 0), y = (0, 0),
zj = (0, j), where i, j = 1, . . . n. Then for any basic operation ω of nV × nV

x1yz1P . . . xnyznP ω = (1, 0)(0, 0)(0, 1)P . . . (n, 0)(0, 0)(0, n)P ω

= (1, 1) . . . (n, n) ω = (1 . . . nω, 1 . . . nω)
= (1 . . . nω, 0)(0, 0)(0, 1 . . . nω)P
= (1, 0) . . . (n, 0)ω (0, 0) (0, 1) . . . (0, n)ω P

= x1 . . . xnω y z1 . . . znω P.
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In this way we obtained the following identities:

xyzP t y P = xtzP(A)

xyyP = x = yxxP(M)

x1yz1P . . . xnyznP ω = x1 . . . xnω y z1 . . . znω P(QC)

Finally we use all the above identities to show centrality. If x = x1 . . . xnω, y =
y1 . . . ynω and z = z1 . . . znω, then

xyzP = x1 . . . xnω t z1 . . . znω P y t Pby (A)

= x1tz1P . . . xntznP ω y t Pby (QC)

= x1y1z1P t y1 P . . . xnynznP t yn P ω y t Pby (A)

= x1y1z1P . . . xnynznP ω t y1 . . . ynω P y t Pby (QC)

= x1y1z1P . . . xnynznP ω y y Pby (A)

= x1y1z1P . . . xnynznP ω.by (M)

¤
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