A CHARACTERIZATION OF VARIETIES EQUIVALENT TO VARIETIES OF AFFINE MODULES

MICHA£ MAREK STRONKOWSKI

Abstract

In this paper we describe coproducts in varieties of affine modules. We prove that coproducts with described structure characterize, up to equivalence, varieties of affine modules.

1. Introduction

Any variety of algebras can be considered as a category with algebras as objects and homomorphisms as morphisms. Such category has coproducts. And it is interesting to know their detailed structure. This knowledge is relevant for a description of free algebras in any variety \underline{V} of algebras. It is well-known that the coproduct of free V-algebras $X_{i} V$ over sets X_{i}, for $i \in I$, is a free V-algebra over the disjoint union of the sets X_{i}. Thus knowledge of "small" free algebras, for instance over one or two free generators, and a good structural description of coproducts, can provide a good description of any free V-algebra. This type of consideration was undertaken by Bela Csákány in [1], who has shown that under certain general conditions, the coproduct of any two algebras in a given variety V coincides with their product iff $\underline{\underline{V}}$ is equivalent to a variety of semimodules. In this note we are interested in varieties in which the coproduct of any two algebras A and B is isomorphic to $A \times B \times 2 V$, where $2 V$ is a free V-algebra over two free generators. Such types of coproducts characterize varieties of affine modules. We show that a variety $\underline{\underline{V}}$ has coproducts of this type iff it is equivalent to a variety of affine modules. Varieties equivalent to varieties of affine modules were characterized by Bela Csákány [2] as idempotent, regular and hamiltonian varieties. Note that the existence of certain types of coproducts (so-called free products) of some families of algebras in a given variety was shown firstly by R. Sikorski [6]. Note also that in fact any variety of algebras considered as a category is also cocomplete.

At first we recall some necessary concepts and notation. Let A, B, C denote algebras in a variety $\underline{\underline{V}}$, or briefly V-algebras. The coproduct in $\underline{\underline{V}}$ of the V-algebras A and B is a V-algebra C together with homomorphisms $\rho_{A}=A \rightarrow C$ and ρ_{B} : $B \rightarrow C$ such that for any two homomorphisms $f_{A}: A \rightarrow D$ and $f_{B}: B \rightarrow D$ into a V-algebra D, there is exactly one homomorphism $f: C \rightarrow D$ such that $f \circ \rho_{A}=\rho_{A} f=f_{A}$ and $f \circ \rho_{B}=\rho_{B} f=f_{B}$. The coproduct C is denoted by $A \sqcup^{V} B$. Homomorphisms ρ_{A} and ρ_{B} are called insertions.

An algebra (A, Ω) is idempotent, if for each $\omega \in \Omega$, it satisfies the identity

$$
x \ldots x \omega=x .
$$

A Mal'cev algebra A, i.e. an algebra admitting a Mal'cev term operation P, is central if the diagonal $D=\{(a, a) \mid a \in A\}$ is a class of a certain congruence of A^{2}. Equivalently, A is central if it satisfies the identities

$$
\begin{equation*}
x_{1} y_{1} z_{1} P \ldots x_{n} y_{n} z_{n} P \omega=x_{1} \ldots x_{n} \omega y_{1} \ldots y_{n} \omega z_{1} \ldots z_{n} \omega P \tag{C}
\end{equation*}
$$

for each $\omega \in \Omega$. A variety $\underline{\underline{V}}$ is idempotent (central) if each V-algebra is idempotent (central).

Two algebras (A, Ω) and (A, Ψ), with the same universe, are equivalent if they have the same term operations. Two varieties $\underline{\underline{V}}$ and $\underline{\underline{W}}$, possibly of different types, are equivalent if they have the same derived operations. (Equivalently, $\underline{\underline{V}}$ and $\underline{\underline{W}}$ are equivalent if the free algebras $\mathbf{N} V$ and $\mathbf{N} W$ over countably infinite set of generators, are isomorphic to equivalent algebras.) Note that the notion of equivalence used here is stronger then categorical equivalence. See [5] or [4] for details. An algebra (A, Ψ) is a reduct of (A, Ω), if Ψ is a subset of the set of term operations of (A, Ω).

By an affine module over a ring $^{\text {a) }} R$ we understand the reduct (A, \underline{R}, P) of a module $(A,+, R)$, where P is the Mal'cev operation $x y z P=x-y+z$ and \underline{R} is the set of operations $x y \underline{r}=x(1-r)+y r$. It is known that the operations \underline{R} and P generate all idempotent term operations of each module $(A,+, R)$. The variety of modules over R is denoted by Mod_{R}. Also the class of affine modules over R forms a variety. It is denoted by $A \overline{\overline{f f_{R}} \text {. It }}$ can be characterized similarly as in the case when the ring R is commutative (see [5, Section 6.3]).
Theorem 1. The class $\underline{\underline{A f f_{R}}}$ is a central idempotent and Mal'cev variety. The free $A f f_{R}$-algebra on two generators (0 and 1) has the structure of the ring R. The variety $\underline{\underline{A} f f_{R}}$ is defined by the central, idempotent and Mal'cev identities and for all $p, q, \overline{\overline{r \in R}}$, the following additional ones:

$$
\begin{gathered}
x y \underline{0}=x=y x \underline{1}, \\
x y \underline{p} x y \underline{q} \underline{r}=x y \underline{p q \underline{r}}, \\
x y \underline{p} x y \underline{q} x y \underline{r} P=x y \underline{p q r} P .
\end{gathered}
$$

Proof. It is analogous to the proof presented in [5, Section 6.3] in the case the ring R is commutative. One just has to replace entropicity for centrality.

The next Theorem will be used later. It is also an easy generalization of corresponding theorems in [5, Section 6.3].
Theorem 2. A variety $\underline{\underline{V}}$ is equivalent to the variety $A f f_{R}$ of affine modules over a ring R iff it is a central idempotent and Mal'cev variety.

2. Coproducts in central idempotent and Mal'cev varieties

In this section we describe coproducts in central idempotent and Mal'cev varieties.

For a variety $\underline{\underline{V}}$, let $2 V$ denote the free V-algebra over a two element set of free generators denoted by 0 and 1 .

[^0]Proposition 3. Let $\underline{\underline{V}}$ be an idempotent central and Mal'cev variety. Then for any two V-algebras A an $\overline{\bar{d}} B$, the algebra $C=A \times B \times 2 V$ with maps $\rho_{A}: A \rightarrow C ; a \mapsto$ $(a, d, 0)$ and $\rho_{B}: B \rightarrow C ; b \mapsto(c, b, 1)$, where c is any fixed element in A and d is any fixed element in B, is a coproduct of A and B in $\underline{\underline{V}}$.
Proof. Since $\underline{\underline{V}}$ is idempotent, the maps ρ_{A} and ρ_{B} are homomorphisms. We will show that the set $X=A \rho_{A} \cup B \rho_{B}$ generates C. Let D be the subalgebra of C generated by X. First note that, by idempotency, $\{c\} \times\{d\} \times 2 V \subseteq D$. Furthermore, by Mal'cev identities, $(a, d, u)=(a, d, 0)(c, d, 0)(c, d, u) P$. Hence $A \times\{d\} \times 2 V \subseteq D$. Similar argument shows that $\{c\} \times B \times 2 V \subseteq D$. And finally, since every element of C can be written as $(a, b, u)=(a, d, u)(c, d, u)(c, b, u) P$, it follows that $C \subseteq D$. Hence C and D coincide.

It remains to show that for any homomorphisms $f: A \rightarrow E$ and $g: B \rightarrow E$ into a V-algebra E, there exists a homomorphism $h: C \rightarrow E$, such that $\rho_{A} h=f$ and $\rho_{B} h=g$.

First note that every element of C can be written as

$$
\begin{aligned}
(a, b, u) & =\left(a_{1}, d, 0\right) \ldots\left(a_{n}, d, 0\right)\left(c, b_{1}, 1\right) \ldots\left(c, b_{m}, 1\right) w \\
& =\left(a_{1} \ldots a_{n} c \ldots c w, d \ldots d b_{1} \ldots b_{m} w, 0 \ldots 01 \ldots 1 w\right)
\end{aligned}
$$

where w is an $(n+m)$-ary term operation.
Then define a map h to be the following assignment

$$
\begin{gathered}
\left(a_{1} \ldots a_{n} c \ldots c w, d \ldots d b_{1} \ldots b_{m} w, 0 \ldots 01 \ldots 1 w\right) \\
\text { I } \\
a_{1} f \ldots a_{n} f b_{1} g \ldots b_{m} g w
\end{gathered}
$$

We will show that h is well defined. Assume therefore that

$$
\begin{gathered}
a_{1} \ldots a_{n} c \ldots c w=a_{1}^{\prime} \ldots a_{k}^{\prime} c \ldots c v \\
d \ldots d b_{1} \ldots b_{m} w=d \ldots d b_{1}^{\prime} \ldots b_{l}^{\prime} v \\
0 \ldots 01 \ldots 1 w=0 \ldots 01 \ldots 1 v
\end{gathered}
$$

The third equality means that the identity $x \ldots x y \ldots y w=x \ldots x y \ldots y v$, where x occurs exactly n times on the left, k times on the right hand side and y occurs m times on the left, l times on the right hand side, holds in $\underline{\underline{V}}$. The equalities above imply the following:

$$
\begin{aligned}
& a_{1} f \ldots a_{n} f b_{1} g \ldots b_{m} g w \\
& \quad=\left(a_{1} f d g d g P\right) \ldots\left(a_{n} f d g d g P\right)\left(c f c f b_{1} g P\right) \ldots\left(c f c f b_{m} g P\right) w \\
& =\left(a_{1} \ldots a_{n} c \ldots c w f\right)(d g \ldots d g c f \ldots c f w)\left(d \ldots d b_{1} \ldots b_{m} w g\right) P \\
& =\left(a_{1}^{\prime} \ldots a_{k}^{\prime} c \ldots c v f\right)(d g \ldots d g c f \ldots c f v)\left(d \ldots d b_{1}^{\prime} \ldots b_{l}^{\prime} v g\right) P \\
&
\end{aligned} \quad=c_{1} f \ldots c_{k} f d_{1} g \ldots d_{l} g v, .
$$

and this is what we wanted to show.
To finish the proof one should show that the map h is a homomorphism. This is quite standard and is left to the reader.

Remark 4. There are at least two other possible proofs of Proposition 3. The first one is based on the fact that each central idempotent Mal'cev algebra is regular and hamiltonian. This approach was used in [8]. The second works nicely for varieties
$A f f_{R}$ and is based on the Sikorski's construction of coproducts, described in [6]. $\overline{\overline{H o w e}} \mathrm{ver}$, we believe that the proof presented here is the easiest and the most direct one.

3. A characterization of $\underline{\underline{A f f_{R}}}$

Here is the main result of the paper.
Theorem 5. For any variety $\underline{\underline{V}}$ the following conditions are equivalent:
(1) $\underline{\underline{V}}$ is equivalent to a variety of affine modules;
(2) $\underline{\underline{V}}$ is a central idempotent and Mal'cev variety;
(3) $\overline{\underline{V}}$ has coproducts of the form described in Proposition 3;
(4) \bar{F} or each natural number n the algebra $(2 V)^{n}$ is free over exactly $n+1$ free generators: $(0, \ldots, 0),(1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)$.

Proof. Theorem 2 shows the equivalence ($1 \Leftrightarrow 2$).
Proposition 3 gives the implication ($2 \Rightarrow 3$).
Now we will focus our attention on the implication $(3 \Rightarrow 4)$. The proof is by induction on n. First we show that the variety $\underline{\underline{V}}$ is idempotent i.e. the algebra $1 V$ has exactly one element and thus is isomorphic to $(2 V)^{0}$. If $\pi: A \times B \times 2 V \rightarrow$ $2 V$ is the third projection, then $A \rho_{A} \pi=\{0\}$ is a one-element subalgebra of $2 V$. And hence $1 V=\{0\}$. Then, by remarks in the introduction, $(n+1) V \cong 1 V \sqcup^{V}$ $n V \cong 1 V \times n V \times 2 V \cong 1 V \times(2 V)^{(n-1)} \times 2 V \cong(2 V)^{n}$. The elements $(0, \ldots, 0)$, $(1,0, \ldots, 0), \ldots,(0, \ldots, 1)$ are the free generators of $(2 V)^{n}$.

Now we prove the implication $(4 \Rightarrow 2)$. Since $1 V=\{0\}$, the variety $\underline{\underline{V}}$ is idempotent. Consider the free algebra $(2 V)^{2}$ with the free generators $x=(\overline{1,0})$, $y=(0,0), z=(0,1)$. Let P be a term operation, such that $x y z P=(1,1)$. Define the map $f:\{x, y, z\} \rightarrow(2 V)^{2} ; x, y \mapsto y ; z \mapsto z$. Since $(2 V)^{2}$ is free, the map f extends to the homomorphism $\bar{f}:(2 V)^{2} \rightarrow(2 V)^{2} ;(a, b) \mapsto(0, b)$. It follows that

$$
x x z P=x f y f z f P=x y z P \bar{f}=(1,1) \bar{f}=z
$$

and similarly $x z z P=x$. Thus P is a Mal'cev term and $\underline{\underline{V}}$ is a Mal'cev variety. Now consider the free algebra $(2 V)^{3}$ with the free generators $x=(1,0,0), y=(0,0,0)$, $z=(0,1,0)$ and $t=(0,0,1)$. Then

$$
\begin{aligned}
x y z P t y P & =(1,0,0)(0,0,0)(0,1,0) P(0,0,1)(0,0,0) P \\
& =(1,1,0)(0,0,1)(0,0,0) P=(1,1,010 P) \\
& =(1,0,0)(0,0,1)(0,1,0) P=x t z P .
\end{aligned}
$$

Next take the free algebra $n V \times n V$ with the free generators $x_{i}=(i, 0), y=(0,0)$, $z_{j}=(0, j)$, where $i, j=1, \ldots n$. Then for any basic operation ω of $n V \times n V$

$$
\begin{aligned}
x_{1} y z_{1} P \ldots x_{n} y z_{n} P \omega & =(1,0)(0,0)(0,1) P \ldots(n, 0)(0,0)(0, n) P \omega \\
& =(1,1) \ldots(n, n) \omega=(1 \ldots n \omega, 1 \ldots n \omega) \\
& =(1 \ldots n \omega, 0)(0,0)(0,1 \ldots n \omega) P \\
& =(1,0) \ldots(n, 0) \omega(0,0)(0,1) \ldots(0, n) \omega P \\
& =x_{1} \ldots x_{n} \omega y z_{1} \ldots z_{n} \omega P .
\end{aligned}
$$

In this way we obtained the following identities:

$$
\begin{align*}
& x y z P t y P=x t z P \tag{A}\\
& x y y P=x=y x x P
\end{align*}
$$

(QC)

$$
x_{1} y z_{1} P \ldots x_{n} y z_{n} P \omega=x_{1} \ldots x_{n} \omega y z_{1} \ldots z_{n} \omega P
$$

Finally we use all the above identities to show centrality. If $x=x_{1} \ldots x_{n} \omega, y=$ $y_{1} \ldots y_{n} \omega$ and $z=z_{1} \ldots z_{n} \omega$, then
by (A)

$$
x y z P=x_{1} \ldots x_{n} \omega t z_{1} \ldots z_{n} \omega P \text { y } t P
$$

by $(\mathrm{QC}) \quad=x_{1} t z_{1} P \ldots x_{n} t z_{n} P \omega y t P$
by (A)

$$
=x_{1} y_{1} z_{1} P t y_{1} P \ldots x_{n} y_{n} z_{n} P t y_{n} P \omega \text { y } t P
$$

by $(\mathrm{QC}) \quad=x_{1} y_{1} z_{1} P \ldots x_{n} y_{n} z_{n} P \omega t y_{1} \ldots y_{n} \omega P$ y $t P$
by (A) $\quad=x_{1} y_{1} z_{1} P \ldots x_{n} y_{n} z_{n} P \omega y$ y P
by (M)

$$
=x_{1} y_{1} z_{1} P \ldots x_{n} y_{n} z_{n} P \omega .
$$

The author is deeply grateful to Prof. Anna Romanowska for her support and suggestions.

References

[1] B. Csákány, Primitive classes of algebras which are equivalent to classes of semimodules and modules, Acta Sci. Math. 24 (1963) 157-164, in Russian.
[2] B. Csákány, Varieties of affine modules, Acta Sci. Math. 37 (1973) 3-10.
[3] B. Csákány, Varieties of modules and affine modules, Acta Math. Acad. Sci. Hungar. 26 (1975) 263-266.
[4] R.N. McKenzie, G.F. McNulty and W.F Taylor, Algebras, lattices, varieties, vol. I,Wadsworth \& Brooks/Cole, Monterey 1987.
[5] A.B. Romanowska and J.D.H. Smith, Modes, World Scientific, Singapore 2002.
[6] R. Sikorski, Products of abstract algebras, Fund. Math. 39 (1952) 211-228.
[7] J.D.H. Smith and A.B. Romanowska, Post-modern Algebra, J. Wiley, New York 1999.
[8] M.M. Stronkowski, On varieties equivalent to varieties of affine modules, Master Thesis Warsaw University of Technology, Warsaw 2002, in Polish.

Faculty of Mathematics and Information Sciences, Warsaw University of Technology, 00-661 Warsaw, Poland

E-mail address: m.stronkowski@mini.pw.edu.pl

[^0]: ${ }^{\text {a) }}$ In this paper the word ring means (not necessarily commutative) ring with identity.

