Name

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets

every square root of an odd number is $odd(\cdot, +, =, 1)$

2. Prove or disprove $(x, y, z \in \mathbb{R})$ $\exists z \forall x \forall y \ z \cdot y \neq x$

3. Proof by induction $14|3^{4n+2} + 5^{2n+1}$ 4. For how many assignments the formula is true? Transform it into DNF form (e.i. $(x_1 \land x_2 \land x_3) \lor$ (..)... \lor (...) where x_i are variable or their negations)

$$[(q \lor p) \Rightarrow (r \lor p)] \lor (p \Rightarrow q)$$

Name

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets

every square root of an even number is $\operatorname{even}(\cdot,+,=,1)$

2. Prove or disprove $(x, y, z \in \mathbb{R})$

 $\exists z \forall x \forall y \ z \cdot y = x$

3. Proof by induction $25|2^{n+2} \cdot 3^n + 5n - 4$ 4. For how many assignments the formula is true? Transform it into DNF form (e.i. $(x_1 \land x_2 \land x_3) \lor$ (..)... \lor (...) where x_i are variable or their negations)

$$[\sim (q \Rightarrow p) \lor (r \Rightarrow p)] \Rightarrow \sim (p \Rightarrow q)$$