Name \qquad

	DA.... row			
1.	2.	3.	4.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets
every square root of an odd number is odd $(\cdot,+,=, 1)$
2. Prove or disprove $(x, y, z \in \mathbb{R})$
$\exists z \forall x \forall y z \cdot y \neq x$
3. Proof by induction
$14 \mid 3^{4 n+2}+5^{2 n+1}$
4. For how many assignments the formula is true? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee$ $(..) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)

$$
[(q \vee p) \Rightarrow(r \vee p)] \vee(p \Rightarrow q)
$$

Name \qquad

	DA.... row			
1.	2.	3.	4.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets
every square root of an even number is even $(\cdot,+,=, 1)$
2. Prove or disprove $(x, y, z \in \mathbb{R})$
$\exists z \forall x \forall y z \cdot y=x$
3. Proof by induction
$25 \mid 2^{n+2} \cdot 3^{n}+5 n-4$
4. For how many assignments the formula is true? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee$ $(..) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)

$$
[\sim(q \Rightarrow p) \vee(r \Rightarrow p)] \Rightarrow \sim(p \Rightarrow q)
$$

