Name \qquad

EA.... row				
1.	2.	3.	4.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets
all primes except one are $\operatorname{odd}(\cdot,+,=, 1)$
2. Prove or disprove $(x, y, z \in \mathbb{R})$
$\exists x \forall z \forall y z \cdot y \neq x$
3. Proof by induction that sequence $a_{n}=3^{n}-2^{n}$ is the solution of the recurrence $a_{n}=5 a_{n-1}-6 a_{n-2}, a_{0}=0, a_{1}=1$.
4. For how many assignments the formula is true? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee$ $(..) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)

$$
[(p \Leftrightarrow q) \Rightarrow r] \Rightarrow[(p \Rightarrow q) \wedge(q \Rightarrow r)]
$$

Name \qquad

EA.... row				
1.	2.	3.	4.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets
there is no largest prime $(\cdot,+,=, 1)$
2. Prove or disprove $(x, y, z \in \mathbb{R})$
$\forall x \forall y \exists z z \cdot y=x$
3. Proof by induction that sequence $a_{n}=3^{n}-2^{n}$ is the solution of the recurrence $a_{n}=8 a_{n-1}-15 a_{n-2}, a_{0}=0, a_{1}=2$.
4. For how many assignments the formula is true? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee$ $(..) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)

$$
[(p \Rightarrow q) \wedge(q \Rightarrow r)] \Rightarrow[(p \Leftrightarrow q) \Rightarrow r]
$$

