Name

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets

a) number x is a square of a prime $number(\cdot, +, =, 1)$

b) x is the largest even divisor of $n(\cdot, +, =, 1, <)$

3. Proof by induction $6|n^3 - n$.

4. For how many assignments the formula is true? Transform it into DNF form (e.i. $(x_1 \land x_2 \land x_3) \lor$ (..)... \lor (...) where x_i are variable or their negations)

$$[(q \Rightarrow p) \Rightarrow r] \Rightarrow \sim [q \Rightarrow (p \Rightarrow r)]$$

Name

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets

a) number x is a sum of two prime $numbers(\cdot,+,=,1)$

b) x is the only even divisor of $n(\cdot, +, =, 1, <)$

3. Proof by induction $6|n^3 + 5n$.

4. For how many assignments the formula is true? Transform it into DNF form (e.i. $(x_1 \land x_2 \land x_3) \lor$ (..)... \lor (...) where x_i are variable or their negations)

$$[(p \land q) \lor (q \land r)] \Rightarrow [(p \lor q) \Leftrightarrow r]$$

Name

FA	row		col
1.	2.	3.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets

a) number x is a product of an odd number and a prime $number(\cdot, +, =, 1)$

b) x is the only smallest square bigger than $n(\cdot,+,=,1,<)$

3. Proof by induction $2^n > 2n$ for n > 1.

4. For how many assignments the formula is true? Transform it into DNF form (e.i. $(x_1 \land x_2 \land x_3) \lor$ (..)... \lor (...) where x_i are variable or their negations)

$$[(p \lor q) \Rightarrow r] \Rightarrow [(p \land q) \Leftrightarrow r]$$