Name \qquad

FA.... row \ldots.	col...		
1.	2.	3.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets
a) number x is a square of a prime number $(\cdot,+,=, 1)$
b) x is the largest even divisor of $n(\cdot,+,=, 1,<)$
2. Proof by induction
$6 \mid n^{3}-n$.
3. For how many assignments the formula is true? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee$ $(..) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)

$$
[(q \Rightarrow p) \Rightarrow r] \Rightarrow \sim[q \Rightarrow(p \Rightarrow r)]
$$

Name \qquad

FA.... row \ldots.	col...		
1.	2.	3.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets
a) number x is a sum of two prime numbers $(\cdot,+,=, 1)$
b) x is the only even divisor of $n(\cdot,+,=, 1,<)$
2. Proof by induction
$6 \mid n^{3}+5 n$.
3. For how many assignments the formula is true? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee$ $(..) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)

$$
[(p \wedge q) \vee(q \wedge r)] \Rightarrow[(p \vee q) \Leftrightarrow r]
$$

Name \qquad

FA.... row \ldots.	col...		
1.	2.	3.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets
a) number x is a product of an odd number and a prime number $(\cdot,+,=, 1)$
b) x is the only smallest square bigger than $n(\cdot,+,=, 1,<)$
2. Proof by induction
$2^{n}>2 n$ for $n>1$.
3. For how many assignments the formula is true? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee$ $(..) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)

$$
[(p \vee q) \Rightarrow r] \Rightarrow[(p \wedge q) \Leftrightarrow r]
$$

