Name \qquad

GA.... row col....				
1 a	1b	2	3	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets
a) odd number has odd divisors only $(\cdot,+,=, 1)$
b) a sum of any number and its square is even $(\cdot,+,=, 1,<)$
2. Proof by induction
$3 \mid 10^{n}+7^{n}-5$.
3. For how many assignments the formula is true? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee$ $(..) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)

$$
[(p \vee q) \Rightarrow(q \vee r)] \Rightarrow[(p \Rightarrow q) \wedge \sim r]
$$

Name \qquad

GA.... row col....				
1 a	1b	2	3	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets
a) not every even number has only even divisors $(\cdot,+,=, 1)$
b) product of any two consecutive numbers is even $(\cdot,+,=, 1,<)$
2. Proof by induction
$3 \mid 13^{n}+10^{n}+1$.
3. For how many assignments the formula is true? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee$ $(..) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)

$$
[(p \vee \sim q) \Rightarrow(q \vee r)] \Rightarrow[(p \Rightarrow q) \wedge r]
$$

