Name \qquad

1.(2p) Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets: between any two squares there is an even number $(\cdot,+,=,<)$
2.(1p) Proof or disproof. Variables vary through the set \mathbb{R}. $\forall x \forall y \exists z x \cdot z=y$.
3.(2p) Proof by induction
$\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\ldots+\frac{1}{n(n+1)}=\frac{n}{n+1}$
4.(3p) Exhibit truth table for the given formula. Transform the formula into DNF form (e.i. ($x_{1} \wedge x_{2} \wedge$ $\left.x_{3}\right) \vee(..) \ldots \vee(\ldots)$ where x_{i} is variable or its negation)

$$
[(q \vee \sim r) \Rightarrow(p \wedge \sim r)] \Rightarrow[(\sim q \Rightarrow p) \wedge r]
$$

Name \qquad

1.(2p) Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets: between any two even numbers there is an odd number $(\cdot,+,=,<, 1)$
2.(1p) Proof or disproof. Variables vary through the set $\mathbb{R} . \forall z \exists y \exists x x \cdot z=y$.
3.(2p) Proof by induction
$\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$
4.(3p) Exhibit truth table for the given formula. Transform the formula into DNF form (e.i. ($x_{1} \wedge x_{2} \wedge$ $\left.x_{3}\right) \vee(..) \ldots \vee(\ldots)$ where x_{i} is variable or its negation)

$$
[(p \vee \sim r) \Rightarrow(q \wedge \sim r)] \Rightarrow[(\sim p \Rightarrow q) \wedge r]
$$

