1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{R} and symbols indicated in brackets
linear function with all coefficients positive is increasing $(\cdot,+,=, 1,>, 0)$
2. For what X the following holds.
$\{\emptyset,\{X, \emptyset\}\} \in\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$
3.Find:
$\bigcup_{a \in(0, \infty)}[a, \infty) \times(-\infty, a]$
$\bigcap_{a \in[0,1]}[a, \infty) \times(-\infty, a]$

3. Prove or disprove
a) $(A \div B) \backslash(A \backslash C)=(A \cap-B \cap C) \cup(B \backslash A)$
b) $(A \div B) \backslash(A \backslash C)=(B \backslash(A \backslash C)) \cup(A \cap C)$

Name

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{R} and symbols indicated in brackets
linear function with all coefficients negative is decreasing $(\cdot,+,=, 1,>, 0)$
2. For what X the following holds.
$\{\emptyset,\{X, \emptyset\}\} \subseteq\{\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}$
3.Find:
$\bigcap_{a \in[0,1]}(-\infty, a] \times(-\infty,-a]$

$$
\bigcup_{a \in[-\infty, 0)}(-\infty, a] \times(-\infty,-a]
$$

4. Prove or disprove
a) $(A \div C) \backslash(A \backslash B)=(A \cap B \cap-C) \cup(C \backslash A)$
b) $(A \div C) \backslash(A \backslash B)=(C \backslash(A \backslash B)) \cup(A \cap B)$

