Name


1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set $\mathbb{R}$ and symbols indicated in brackets
there exactly two numbers each equal to its squares $(\cdot,=)$
2. For what real numbers $x$ the following holds.
$\{3,5, x\} \in\{\{3,5,8\},\{3,5\},\{3,8\},\{3,8,9\}\}$
3.Find:
$\bigcap_{i \in \mathbb{N}_{+}}\left[1+\frac{1}{(i-3)^{2}+2}, 5-\frac{1}{(i+2)^{2}+2}\right)=$
$\bigcup_{i \in \mathbb{N}_{+}}\left[1+\frac{1}{(i-3)^{2}+2}, 5-\frac{1}{(i+2)^{2}+2}\right)=$
3. Prove or disprove
a) $[(A \div B) \backslash C] \cup(A \cap B \cap C)=[A \backslash(B \div C)] \cup[B \backslash(A \div C)]$
b) $[A \backslash(B \backslash C)] \cap[A \backslash(C \backslash B)]=A \backslash(B \cap C)$

Name


1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set $\mathbb{R}$ and symbols indicated in brackets
there are exactly two numbers that are self-inverse with respect to multiplication $(\cdot,=, 1)$
2. For what real numbers $x$ the following holds.
$\{\{3,5\},\{x, 5\}\} \subseteq\{\{3,5,8\},\{3,5\},\{5,8\},\{3\},\{5\},\{3,8,9\}\}$
3.Find:
$\bigcap_{i \in \mathbb{N}_{+}}\left[2-\frac{1}{(i+3)^{2}+2}, 7+\frac{1}{(i-2)^{2}+2}\right)=$
$\bigcup_{i \in \mathbb{N}_{+}}\left[2-\frac{1}{(i+3)^{2}+2}, 7+\frac{1}{(i-2)^{2}+2}\right)=$
3. Prove or disprove
a) $[A \backslash(B \backslash C)] \cap[A \backslash(C \backslash B)]=A \div(B \div C)$
b) $[(A \div C) \backslash B] \cup(A \cap B \cap C)=(A \cup B \cup C) \backslash[(C \backslash B) \cup(B \backslash A)]$
