Name \qquad

	FA.... row col				
1.	2.	3.	4	\sum	

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{R} and symbols indicated in brackets
there exists a quadratic polynomial with two roots that are both positive or both negative $(\cdot,+,=,<, 0)$
2. For what numbers $x \in \mathbb{N}$ the following holds.
$\{\{3, x\},\{5, x, 8\} \subseteq\{\{3\},\{5,8\},\{3,5,8\},\{3,8\},\{3,5,9\}\}$
3.Find:
$\bigcap_{i \in \mathbb{N}_{+}}\left[1+\frac{1}{2 i}, 5-\frac{1}{i}\right) \times\left[1-\frac{1}{2 i}, 5-\frac{1}{i}\right]=$
$\left(\bigcup_{i \in \mathbb{N}_{+}}\left[1+\frac{1}{2 i}, 5-\frac{1}{i}\right)\right) \times\left(\bigcup_{i \in \mathbb{N}_{+}}\left[1-\frac{1}{2 i}, 5-\frac{1}{i}\right]\right)=$
3. Prove or disprove
a) $[(A \cup B) \div C] \backslash(B \backslash A)=(A \backslash C) \cup[C \backslash(A \cup B)]$
b) $(A \cup B) \div(C \cup B)=(A \div C) \cup B$

Name \qquad

	FA.... row col				
1.	2.	3.	4	\sum	

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{R} and symbols indicated in brackets
there exists a quadratic polynomial with two roots of different signs $(\cdot,+,=,<, 0)$
2. For what numbers $x \in \mathbb{N}$ the following holds.
$\{\{3, x\},\{5, x, 8\} \subseteq\{\{3\},\{5,8\},\{3,5,8\},\{3,5\},\{3,5,9\}\}$
3.Find:
$\bigcap_{i \in \mathbb{N}_{+}}\left[1-\frac{1}{3 i}, 5-\frac{1}{i}\right) \times\left[1+\frac{1}{3 i}, 5-\frac{1}{i}\right]=$
$\left(\bigcup_{i \in \mathbb{N}_{+}}\left[1-\frac{1}{3 i}, 5-\frac{1}{i}\right)\right) \times\left(\bigcup_{i \in \mathbb{N}_{+}}\left[1+\frac{1}{3 i}, 5-\frac{1}{i}\right]\right)=$
3. Prove or disprove
a) $(A \cup B) \div(B \cup C)=(A \div C) \backslash B$
b) $[(A \div B) \cup C] \backslash(B \backslash A)=(A \backslash C) \cup[C \backslash(A \cup B)]$

Name \qquad

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{R} and symbols indicated in brackets
there exists a quadratic polynomial with no negative roots $(\cdot,+,=,<, 0)$
2. For what numbers $x \in \mathbb{N}$ the following holds. $\{\{3, x\},\{5, x\} \subseteq\{\{3\},\{5,8\},\{3,5,8\},\{3,5\},\{3,8\},\{3,5,9\}\}$ 3.Find:
$\bigcap_{i \in \mathbb{N}_{+}}\left[1+\frac{1}{2 i}, 5+\frac{1}{2 i}\right) \times\left[1-\frac{1}{2 i}, 5+\frac{1}{2 i}\right]=$
$\left(\bigcup_{i \in \mathbb{N}_{+}}\left[1+\frac{1}{2 i}, 5+\frac{1}{2 i}\right)\right) \times\left(\bigcup_{i \in \mathbb{N}_{+}}\left[1-\frac{1}{2 i}, 5+\frac{1}{2 i}\right]\right)=$
3. Prove or disprove a) $[(A \div B) \cup C]=(A \cup B \cup C) \backslash[(A \cap B) \backslash C]$
b) $[(A \div B) \cup C]=[(A \cup C) \backslash B] \cup[(B \cup C) \backslash A]$
