		HA row				
	1.	2.	3.	4.	5.	\sum
•						

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{R} and symbols indicated in brackets

all numbers except exactly one have an inverse $(\cdot,+,=,<,0,1)$

2. For what numbers $x \in \mathbb{N}$ the following holds.

$$\{\{1,x\},\{3,x,8\}\}\subseteq \{\{1\},\{1,2\},\{2,3,8\},\{1,7\},\{1,3\},\{3,1,8\},\{3,8\},\{5,7,8\}\}$$

3. Prove or disprove $(A \cup B) \div (B \cup C) = A \div C$

4.Find

$$\bigcap_{i \in \mathbb{N}} \left[1 - \frac{1}{(i-1)^2 + 1}, 3 + \frac{1}{(i-2)^2 + 1} \right) =$$

$$\bigcup_{i \in \mathbb{N}} \left[1 - \frac{1}{(i-1)^2 + 1}, 3 + \frac{1}{(i-2)^2 + 1} \right) =$$

$$\bigcup_{i \in \mathbb{N}} \left[1 - \frac{1}{(i-1)^2 + 1}, 3 + \frac{1}{(i-2)^2 + 1} \right) = 5. \text{ Prove or disprove } (A \div C) - (B - A) = (A - B) \cup [C - (A \cup B)]$$

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{R} and symbols indicated in brackets

if a real number has an inverse then it has exactly one inverse $(\cdot, +, =, <, 0, 1)$

2. For what numbers $x \in \mathbb{N}$ the following holds.

 $\{\{2,x\},\{4,x,8\}\}\subseteq \{\{2\},\{1,2\},\{2,4,8\},\{2,7\},\{2,8\},\{2,4,8\},\{4,8\},\{5,7,3\}\}$

3. Prove or disprove $(A \cup B) \div C = (A \div C) \cup (B \div C)$

4.Find

$$\bigcap_{i \in \mathbb{N}} \left(2 + \frac{1}{(i-2)^2 + 1}, 4 - \frac{1}{(i-1)^2 + 1} \right] =$$

$$\bigcup_{i \in \mathbb{N}} \left(2 + \frac{1}{(i-2)^2 + 1}, 4 - \frac{1}{(i-1)^2 + 1} \right] =$$

$$\bigcup_{i \in \mathbb{N}} \left(2 + \frac{1}{(i-2)^2 + 1}, 4 - \frac{1}{(i-1)^2 + 1} \right) = 5. \text{ Prove or disprove } (A - B) \cup (B - C) \cup (C - A) = (A \cup B \cup C) - (A \cap B \cap C)$$