Name \qquad

| $\mathrm{HA} . .$. row col.... | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1. | 2. | 3. | 4. | 5. | \sum |
| | | | | | |

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{R} and symbols indicated in brackets
all numbers except exactly one have an inverse $(\cdot,+,=,<, 0,1)$
2. For what numbers $x \in \mathbb{N}$ the following holds.
$\{\{1, x\},\{3, x, 8\}\} \subseteq\{\{1\},\{1,2\},\{2,3,8\},\{1,7\},\{1,3\},\{3,1,8\},\{3,8\},\{5,7,8\}\}$
3. Prove or disprove $(A \cup B) \div(B \cup C)=A \div C$
4.Find
$\bigcap_{i \in \mathbb{N}}\left[1-\frac{1}{(i-1)^{2}+1}, 3+\frac{1}{(i-2)^{2}+1}\right)=$
$\bigcup_{i \in \mathbb{N}}\left[1-\frac{1}{(i-1)^{2}+1}, 3+\frac{1}{(i-2)^{2}+1}\right)=$
4. Prove or disprove $(A \div C)-(B-A)=(A-B) \cup[C-(A \cup B)]$

Name

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{R} and symbols indicated in brackets
if a real number has an inverse then it has exactly one inverse $(\cdot,+,=,<, 0,1)$
2. For what numbers $x \in \mathbb{N}$ the following holds.
$\{\{2, x\},\{4, x, 8\}\} \subseteq\{\{2\},\{1,2\},\{2,4,8\},\{2,7\},\{2,8\},\{2,4,8\},\{4,8\},\{5,7,3\}\}$
3. Prove or disprove $(A \cup B) \div C=(A \div C) \cup(B \div C)$
4.Find
$\bigcap_{i \in \mathbb{N}}\left(2+\frac{1}{(i-2)^{2}+1}, 4-\frac{1}{(i-1)^{2}+1}\right]=$
$\bigcup_{i \in \mathbb{N}}\left(2+\frac{1}{(i-2)^{2}+1}, 4-\frac{1}{(i-1)^{2}+1}\right]=$
4. Prove or disprove $(A-B) \cup(B-C) \cup(C-A)=(A \cup B \cup C)-(A \cap B \cap C)$
