1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set \mathbb{R} and symbols \in , \mathbb{R} , $\mathbb{R}^{\mathbb{R}}$, \leq , <, =, \cdot , +, -, 0.

function f is increasing from some point

2. For $X_{a,b}=\{(x,y)\in\mathbb{R}^2:y>a(x-b)+\frac{1}{b}\}$ where $a,b\in\mathbb{R}$. Find: $\bigcup_{b\in\mathbb{R}}\bigcap_{a>0}X_{a,b}$

3. Find f[A] and $f^{-1}[f[A]]$ for $A = [-2, 1] \times [-1, 1]$ for $f: \mathbb{R}^2 \to \mathbb{R}$ where $f(x, y) = x^2 - y$

4. Are given relations functions? For functions find their domain, set of valued and settle if they are one-to-one functions? $x, y, z \in \mathbb{R}$.

$$(x,y)Rz \Leftrightarrow (z-x)^2 = -x^2y$$

$$(x,y)Sz \Leftrightarrow (z+y)^2 = -(x+y)^2$$

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set \mathbb{R} and symbols \in , \mathbb{R} , $\mathbb{R}^{\mathbb{R}}$, \leq , <, =, \cdot , +, -, 0.

function f is constant on some infinite interval

2. For
$$X_{a,b}=\{(x,y)\in\mathbb{R}^2:y>a(x-b)+\frac{1}{b^2}\}$$
 where $a,b\in\mathbb{R}$. Find:
$$\bigcap_{a>0}X_{a,b}$$

$$\bigcup_{b\in\mathbb{R}}\bigcap_{a>0}X_{a,b}$$

3. Find f[A] and $f^{-1}[f[A]]$ for $A = [-2, 1] \times [-1, 1]$ for $f: \mathbb{R}^2 \to \mathbb{R}$ where $f(x, y) = -x^2 - y$

4. Are given relations functions? For functions find their domain, set of valued and settle if they are one-to-one functions? $x, y, z \in \mathbb{R}$.

$$(x,y)Rz \Leftrightarrow (z+x)^2 = -(x-y)^2$$

$$(x,y)Sz \Leftrightarrow (z-y)^2 = -x^2y$$