Name \qquad
1.(2p) Write the mathematical formulas corresponding to the following statement with the help of the following signs only: propositional connectives, quantifiers, variables varied through set \mathbb{R} and symbols $\in, \mathbb{R}, \mathbb{R}^{\mathbb{R}}, \leq,<,=, \cdot,+,-, 0$. every odd function has at least one zero
2.(2p) For $x, y \in \mathbb{R}$ let $x \sim y \Leftrightarrow \exists k \in \mathbb{Z} x^{2}+k=y^{2}$. Prove \sim is equivalence relation in \mathbb{R}. Find equivalence classes $[0]_{\sim},[1]_{\sim}$.
3.(2p) For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ where $f(x, y)=(x+y+1)(x-y+2)$
find $f[[-1,2] \times[-2,1]]=$
and draw $f^{-1}[[0, \infty)]$
4.(2p) Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}, f(n)=\max \left\{i \in \mathbb{N}: 2^{i} \mid n\right\}$.

Find $f[\{10,11,12, \ldots, 16\}]=$
and $f^{-1}[\{2\}]=$

Name \qquad
1.(2p) Write the mathematical formulas corresponding to the following statement with the help of the following signs only: propositional connectives, quantifiers, variables varied through set \mathbb{R} and symbols $\in, \mathbb{R}, \mathbb{R}^{\mathbb{R}}, \leq,<,=, \cdot,+,-, 0$.
not every even function has zeros
2.(2p) For $x, y \in \mathbb{Q}_{+}$let $x \sim y \Leftrightarrow \sqrt{x \cdot y} \in \mathbb{Q}_{+}$. Prove \sim is equivalence relation in \mathbb{R}. Find equivalence classes $[1]_{\sim},[2]_{\sim}$.
3.(2p) For $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ where $f(x, y)=(x+y-1)(x-y+2)$
find $f[[1,2] \times[-2,1]]=$
and draw $f^{-1}[[0, \infty)]$
4.(2p) Let $f: \mathbb{N}_{+} \rightarrow \mathbb{N}_{+}, f(n)=\max \{p: p$ is prime number and $p \mid n\}$.

Find $f[\{10,11,12, \ldots, 16\}]=$
and $f^{-1}[\{2\}]=$

