Name

1.(2p) Write the mathematical formulas corresponding to the following statement with the help of the following signs only: propositional connectives, quantifiers, variables varied through set \mathbb{R} and symbols $\in, \mathbb{R}, \mathbb{R}^{\mathbb{R}}, \leq, <, =, \cdot, +, -, 0$. every odd function has at least one zero

2.(2p) For $x, y \in \mathbb{R}$ let $x \sim y \Leftrightarrow \exists k \in \mathbb{Z} \ x^2 + k = y^2$. Prove \sim is equivalence relation in \mathbb{R} . Find equivalence classes $[0]_{\sim}, [1]_{\sim}$.

3.(2p) For $f : \mathbb{R}^2 \to \mathbb{R}$ where f(x, y) = (x + y + 1)(x - y + 2)find $f[[-1, 2] \times [-2, 1]] =$ and draw $f^{-1}[[0, \infty)]$

4.(2p) Let $f : \mathbb{N}_+ \to \mathbb{N}, f(n) = \max\{i \in \mathbb{N} : 2^i | n\}.$ Find $f[\{10, 11, 12, \dots, 16\}] =$

and $f^{-1}[\{2\}] =$

Name

1.(2p) Write the mathematical formulas corresponding to the following statement with the help of the following signs only: propositional connectives, quantifiers, variables varied through set \mathbb{R} and symbols $\in, \mathbb{R}, \mathbb{R}^{\mathbb{R}}, \leq, <, =, \cdot, +, -, 0.$ not every even function has zeros

2.(2p) For $x, y \in \mathbb{Q}_+$ let $x \sim y \Leftrightarrow \sqrt{x \cdot y} \in \mathbb{Q}_+$. Prove \sim is equivalence relation in \mathbb{R} . Find equivalence classes $[1]_{\sim}, [2]_{\sim}$.

3.(2p) For $f : \mathbb{R}^2 \to \mathbb{R}$ where f(x, y) = (x + y - 1)(x - y + 2)find $f[[1, 2] \times [-2, 1]] =$ and draw $f^{-1}[[0, \infty)]$

4.(2p) Let $f : \mathbb{N}_+ \to \mathbb{N}_+$, $f(n) = \max\{p : p \text{ is prime number and } p|n\}$. Find $f[\{10, 11, 12, \dots, 16\}] =$

and $f^{-1}[\{2\}] =$