\qquad col....

1.	2.	3.	\sum

1.(2p) Write the mathematical formulas corresponding to the following statement with the help of the following signs only: propositional connectives, quantifiers, and symbols $\in, \mathbb{R}, \mathbb{R}^{\mathbb{R}}, \leq,<,=, \cdot,+,-, 0$. every odd function has a maximum if and only if it has a minimum
2.(2p) Find sup for every par of elements

sup	1	2	3	4	5	6	7	8	9
1	1								
2	x	2							
3	x	x	3						
4	x	x	x	4					
5	x	x	x	x	5				
6	x	x	x	x	x	6			
7	x	x	x	x	x	x	7		
8	x	x	x	x	x	x	x	8	
9	x	x	x	x	x	x	x	x	9

3.(4p) For $(x, y),(z, t) \in \mathbb{R}^{2}(x, y) \sim(z, t) \Leftrightarrow \exists k \in \mathbb{Z} \sin x-y+k=\sin z-t$. Prove \sim is equivalence relation in \mathbb{R}^{2}. Find and draw equivalence class $[(0,1)]_{\sim}$.
\qquad
group HA... row

1. 2. 3. \sum
1.(2p) Write the mathematical formulas corresponding to the following statement with the help of the following signs only: propositional connectives, quantifiers, and symbols $\in, \mathbb{R}, \mathbb{R}^{\mathbb{R}}, \leq,<,=, \cdot,+,-, 0$. every even function has a maximum or a minimum
2.(2p) Find inf for every par of elements

\inf	1	2	3	4	5	6	7	8	9
1	1	x	x	x	x	x	x	x	x
2		2	x	x	x	x	x	x	x
3			3	x	x	x	x	x	x
4				4	x	x	x	x	x
5					5	x	x	x	x
6						6	x	x	x
7							7	x	x
8								8	x
9									9

3.(4p) For $(x, y),(z, t) \in \mathbb{R}^{2}(x, y) \sim(z, t) \Leftrightarrow \exists k \in \mathbb{Z}|x|-y+k=|z|-t$. Prove \sim is equivalence relation in \mathbb{R}^{2}. Find and draw equivalence class $[(0,1)]_{\sim}$.

