Name \qquad

1.	row col...	3.	4.	5.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets
a) every divisor of an odd number is odd $(\cdot,+, 1,=)$
b) if linear equations has two different solutions then it has a third one. $(\cdot,+, 0,=)$
2. For $X_{a, b}=\left\{(x, y) \in \mathbb{R}^{2}: y>a x^{2}, y<b x\right\}$ where $a, b \in \mathbb{R}$. Find:

3. Prove or disprove
$\mathcal{P}(A \div B) \subseteq \mathcal{P}(A) \div \mathcal{P}(B)$
4. Are the following equalities true. Prove the true one, find a counterexample for the false one.
a) $A \div(C \cap B)=(A \backslash C) \cup(C \backslash(A \cap B)$
b) $A \div(C \cap B)=(C \cap B) \cup(A \backslash C)$
5. Is the following formula a tautology?

Transform it into CNF form (e.i. $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge(..) \ldots \wedge(\ldots)$ where x_{i} are variable or their negations) $[(p \Rightarrow q) \Rightarrow(q \Rightarrow r)] \Rightarrow(p \Rightarrow r)$

Name \qquad

row col...					
1.	2.	3.	4.	5.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets
a) divisors of an even number are not necessary even $(\cdot,+, 1,=)$
b) a quadratic polynomial has at most three roots $(\cdot,+, 0,=)$
2. For $X_{a, b}=\left\{(x, y) \in \mathbb{R}^{2}: y>a x^{2}, y<b(x-1)\right\}$ where $a, b \in \mathbb{R}$. Find:

3. Prove or disprove
$\mathcal{P}(A \times B) \subseteq\{(X, Y): X \subset A, Y \subset B\}$
4. Is the following formula a tautology?

Transform it into CNF form (e.i. $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge(\ldots) \ldots \wedge(\ldots)$ where x_{i} are variable or their negations) $[(q \Rightarrow p) \Rightarrow(q \Rightarrow r)] \Rightarrow(p \Rightarrow r)$
5. Are the following equalities true. Prove the true one, find a counterexample for the false one.
a) $(A \cup B) \div(A \cap B \cap C)=[A \backslash(C \backslash B)] \cup[B \backslash(C \backslash A)]$
b) $(A \cup B) \div(A \cap B \cap C)=[A \backslash(C \cup B)] \cup[B \backslash(C \cup A)] \cup(A \cap B \cap C)$

Name \qquad

1.	row col...	3.	4.	5.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets
a) every number has the smallest prime divisor $(\cdot,+, 1,=)$
b) a quadratic polynomial with all coefficients positive has exactly one minimum. $(\cdot,+, 0,=,<)$
2. For $X_{a, b}=\left\{(x, y) \in \mathbb{R}^{2}: y \leq a x^{2}, y>b x\right\}$ where $a, b \in \mathbb{R}$. Find:

3. Prove or disprove
$\mathcal{P}(A) \subseteq \mathcal{P}(B) \Rightarrow A \subset B$
4. Are the following equalities true. Prove the true one, find a counterexample for the false one.
a) $C \div(B \backslash A)=(A \cap C) \cup[(B \cup C) \backslash(A \cup(B \cap C))]$
b) $C \div(B \backslash A)=B \div(C \backslash A)$
5. Is the following formula a tautology?

Transform it into CNF form (e.i. $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge(..) \ldots \wedge(\ldots)$ where x_{i} are variable or their negations) $[(p \Rightarrow q) \Rightarrow(q \Rightarrow r)] \Rightarrow(r \Rightarrow \sim p)$

Name \qquad

1.	row	3.	4.	5.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets
a) for every number there exists its largest odd divisor $(\cdot,+, 1,=)$
b) the set of values of any quadratic polynomial is bounded from below or above $(\cdot,+, 0,=,<)$
2. For $X_{a, b}=\left\{(x, y) \in \mathbb{R}^{2}: y \leq a x^{2}, y>b(x-1)\right\}$ where $a, b \in \mathbb{R}$. Find:

$\bigcup_{a \geq 0} \bigcup_{b \in \mathbb{R}} X_{a, b}$

3. Prove or disprove
$\mathcal{P}(A \cup B) \cup \mathcal{P}(B \cup C) \cup \mathcal{P}(C \cup A)=A \cup B \cup C$
4. Is the following formula a tautology?

Transform it into CNF form (e.i. $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge(\ldots) \ldots \wedge(\ldots)$ where x_{i} are variable or their negations) $[(q \Rightarrow p) \Rightarrow(q \Rightarrow r)] \Rightarrow(r \Rightarrow \sim p)$
5. Are the following equalities true. Prove the true one, find a counterexample for the false one.
a) $(A \div C) \cup(A \cap B)=(A \cup C) \backslash[A \backslash(C \backslash B)]$
b) $(A \div C) \cup(A \cap B)=(A \backslash B) \div C$

