
					row col		
1		2.	3.	4.	5.	\sum	

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets

a) every divisor of an odd number is odd $(\cdot,+,1,=)$

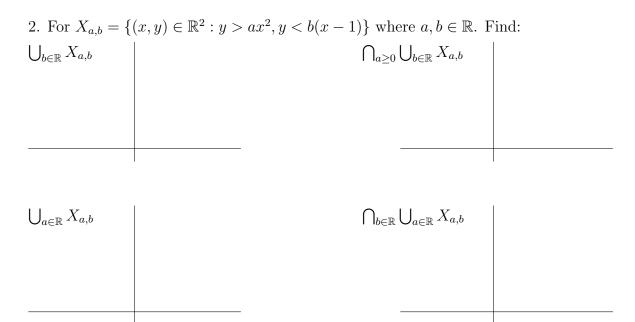
b) if linear equations has two different solutions then it has a third one. $(\cdot, +, 0, =)$

3. Prove or disprove $\mathcal{P}(A \div B) \subseteq \mathcal{P}(A) \div \mathcal{P}(B)$ 4. Are the following equalities true. Prove the true one, find a counterexample for the false one.

a) $A \div (C \cap B) = (A \setminus C) \cup (C \setminus (A \cap B))$

b) $A \div (C \cap B) = (C \cap B) \cup (A \setminus C)$

5. Is the following formula a tautology?


Transform it into CNF form (e.i. $(x_1 \lor x_2 \lor x_3) \land (..) \dots \land (...)$ where x_i are variable or their negations) $[(p \Rightarrow q) \Rightarrow (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$

			<u>row</u> col.		
1.	2.	3.	4.	5.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets

a) divisors of an even number are not necessary even $(\cdot,+,1,=)$

b) a quadratic polynomial has at most three roots $(\cdot,+,0,=)$

3. Prove or disprove

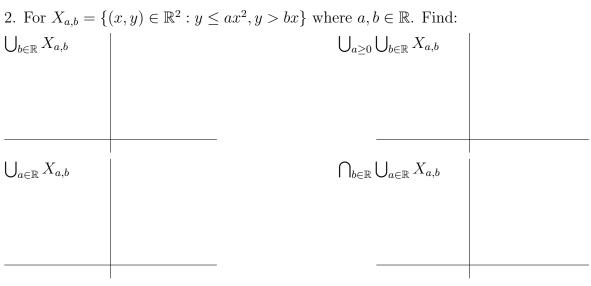
 $\mathcal{P}(A\times B)\subseteq\{(X,Y):X\subset A,Y\subset B\}$

4. Is the following formula a tautology?

Transform it into CNF form (e.i. $(x_1 \lor x_2 \lor x_3) \land (..) \dots \land (...)$ where x_i are variable or their negations) $[(q \Rightarrow p) \Rightarrow (q \Rightarrow r)] \Rightarrow (p \Rightarrow r)$

5. Are the following equalities true. Prove the true one, find a counterexample for the false one.

a) $(A \cup B) \div (A \cap B \cap C) = [A \setminus (C \setminus B)] \cup [B \setminus (C \setminus A)]$


b) $(A \cup B) \div (A \cap B \cap C) = [A \setminus (C \cup B)] \cup [B \setminus (C \cup A)] \cup (A \cap B \cap C)$

_				rov	N	<u>col</u>
	1.	2.	3.	4.	5.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets

a) every number has the smallest prime divisor $(\cdot,+,1,=)$

b) a quadratic polynomial with all coefficients positive has exactly one minimum. $(\cdot, +, 0, =, <)$

3. Prove or disprove $\mathcal{P}(A) \subseteq \mathcal{P}(B) \Rightarrow A \subset B$

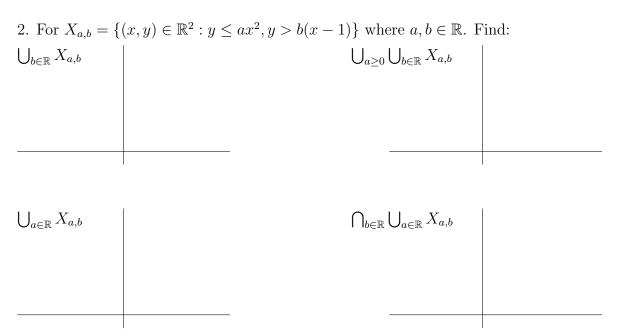
4. Are the following equalities true. Prove the true one, find a counterexample for the false one.

a) $C \div (B \setminus A) = (A \cap C) \cup [(B \cup C) \setminus (A \cup (B \cap C))]$

b) $C \div (B \setminus A) = B \div (C \setminus A)$

5. Is the following formula a tautology?

Transform it into CNF form (e.i. $(x_1 \lor x_2 \lor x_3) \land (..) \dots \land (...)$ where x_i are variable or their negations) $[(p \Rightarrow q) \Rightarrow (q \Rightarrow r)] \Rightarrow (r \Rightarrow \sim p)$


Name

row					<u>col</u>
1.	2.	3.	4.	5.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets

a) for every number there exists its largest odd divisor $(\cdot,+,1,=)$

b) the set of values of any quadratic polynomial is bounded from below or above $(\cdot,+,0,=,<)$

3. Prove or disprove

 $\mathcal{P}(A \cup B) \cup \mathcal{P}(B \cup C) \cup \mathcal{P}(C \cup A) = A \cup B \cup C$

4. Is the following formula a tautology?

Transform it into CNF form (e.i. $(x_1 \lor x_2 \lor x_3) \land (..) \dots \land (...)$ where x_i are variable or their negations) $[(q \Rightarrow p) \Rightarrow (q \Rightarrow r)] \Rightarrow (r \Rightarrow \sim p)$

5. Are the following equalities true. Prove the true one, find a counterexample for the false one.

- a) $(A \div C) \cup (A \cap B) = (A \cup C) \setminus [A \setminus (C \setminus B)]$
- b) $(A \div C) \cup (A \cap B) = (A \setminus B) \div C$