Name \qquad

row col....					
1.	2.	3.	4.	5.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets
a) smallest common multiple of two odd numbers is odd $(\cdot,+, 1,=)$
b) every bounded from above quadratic polynomial has a maximum $(\cdot,+, 0,=, \geq)$
2. For $X_{a, b}=\left\{(x, y) \in \mathbb{R}^{2}: y>a(x-b)+b\right\}$ where $a, b \in \mathbb{R}$. Find:

$\cup_{b \in \mathbb{R}} X_{a, b}$		$\cap_{a \geq 0} \cup_{b \in \mathbb{R}} X_{a, b}$	
$\bigcup_{a \in \mathbb{R}} X_{a, b}$		$\cap_{b \in \mathbb{R}} \cup_{a \in \mathbb{R}} X_{a, b}$	

3. Is the following formula a tautology?

Transform it into CNF form (e.i. $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge(..) \ldots \wedge(\ldots)$ where x_{i} are variable or their negations) $[(p \Rightarrow q) \Rightarrow r] \Rightarrow(p \Rightarrow r)$
4. Are the following equalities true. Prove the true one, find a counterexample for the false one.
a) $A \cup(C \div B)=(A \cup B \cup C) \backslash[(B \cap C) \backslash A]$
b) $A \cup(C \div B)=(B \backslash C) \cup(A \backslash B) \cup(C \backslash B)$
5. Let $X=\left\{(x, y): x, y \in \mathbb{R}_{+}\right\} .(a, b) \sim(c, d) \Leftrightarrow a-b=c-d$. Prove that \sim is equivalence relation. Find equivalence classes.

