Name

row					col
1.	2.	3.	4.	5.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varied through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets

a) smallest common multiple of two odd numbers is odd $(\cdot,+,1,=)$

b) every bounded from above quadratic polynomial has a maximum $(\cdot,+,0,=,\geq)$

3. Is the following formula a tautology?

Transform it into CNF form (e.i. $(x_1 \lor x_2 \lor x_3) \land (..) \dots \land (...)$ where x_i are variable or their negations) $[(p \Rightarrow q) \Rightarrow r] \Rightarrow (p \Rightarrow r)$

4. Are the following equalities true. Prove the true one, find a counterexample for the false one. a) $A \cup (C \div B) = (A \cup B \cup C) \setminus [(B \cap C) \setminus A]$

b) $A \cup (C \div B) = (B \setminus C) \cup (A \setminus B) \cup (C \setminus B)$

5. Let $X = \{(x, y) : x, y \in \mathbb{R}_+\}$. $(a, b) \sim (c, d) \Leftrightarrow a - b = c - d$. Prove that \sim is equivalence relation. Find equivalence classes.