Name \qquad

	row col...				
1.	2.	3.	4.	5.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets
a) even numbers have no odd multiples $(\cdot,+,=, 1)$
b) there is no largest negative number $(<, 0,=)$
2. Is the following formula a tautology?

Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee(\ldots) \ldots \vee(\ldots)$ where x_{i} are variable or their negations) $[(p \Leftrightarrow q) \wedge r] \Rightarrow[(p \wedge q) \vee \sim q]$
3. Prove or disprove a) $\mathcal{P}(\emptyset) \in \mathcal{P}(\mathcal{P}(\emptyset))$ b) $\mathcal{P}(\emptyset) \subseteq \mathcal{P}(\mathcal{P}(\emptyset))$
4. Proof by induction $41 \mid 5 \cdot 7^{2(n+1)}+2^{3 n}$
5. Are the following equalities true. Prove the true one, find a counterexample for the false one. $[A \backslash(B \cup C)] \cup(B \cap C)=[A \backslash(B \div C)] \cup[(B \cap C) \backslash A]$
$[A \backslash(B \cup C)] \cup(B \cap C)=(A \cup B) \backslash(B \backslash C))$

Name \qquad

	row col...				
1.	2.	3.	4.	5.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set a) \mathbb{N} b) \mathbb{R} and symbols indicated in brackets
a) multiplex of odd numbers are not necessary $\operatorname{odd}(\cdot,+, 1,=)$
b) there is no smallest positive number $(<, 0,=)$
2. Is the following formula a tautology?

Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee(..) \ldots \vee(\ldots)$ where x_{i} are variable or their negations) $[(p \Leftrightarrow q) \vee r] \Rightarrow[(p \vee q) \wedge \sim q]$
3. Prove or disprove a) $\mathcal{P}(\emptyset) \in \mathcal{P}(\{\emptyset\})$ b) $\mathcal{P}(\emptyset) \subseteq \mathcal{P}(\{\emptyset\})$
4. Proof by induction $25 \mid 2^{n+2} \cdot 3^{n}+5 n-4$
5. Are the following equalities true. Prove the true one, find a counterexample for the false one. $[C \backslash(B \cup A)] \cup(B \cap A)=[C \backslash(B \div A)] \cup[(B \cap A) \backslash C]$
$[C \backslash(B \cup A)] \cup(B \cap A)=(C \cup B) \backslash(B \backslash A))$

