Name

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set a) \mathbb{N} b) \mathbb{Z} and symbols indicated in brackets

a) a number x has an odd $multiple(\cdot, +, =, 1)$

b) every positive number is a square of some number $(\cdot,+,=,>,0)$

2. Prove or disprove $(x, y, z \in \mathbb{R})$ $\forall y \forall z \exists x \ x \cdot y = z$

3. Proof by induction $11|2^{6n+1} + 3^{2n+2},$ 4. Is the following formula a tautology? Transform it into DNF form (e.i. $(x_1 \land x_2 \land x_3) \lor (..) \ldots \lor (...)$ where x_i are variable or their negations)

 $[((p \lor r) \Rightarrow q) \Rightarrow r] \Rightarrow (p \land r)$

Name

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set a) \mathbb{N} b) \mathbb{Z} and symbols indicated in brackets

a) a number x has an even $divisor(\cdot, +, =, 1)$

b) every positive number has a square $root(\cdot, +, =, >, 0)$

2. Prove or disprove $(x, y, z \in \mathbb{R})$ $\exists x \forall y \forall z \ x \cdot y = x \cdot z$

3. Proof by induction $11|2^{6n+1} + 3^{2n+2}$,

4. Is the following formula a tautology? Transform it into DNF form (e.i. $(x_1 \land x_2 \land x_3) \lor (..) \ldots \lor (...)$ where x_i are variable or their negations)

 $[(p \Rightarrow (q \land r)) \Rightarrow r] \Rightarrow (p \land r)$