Name \qquad

			col.
1.	2.	3.	4.

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set a) \mathbb{N} b) \mathbb{Z} and symbols indicated in brackets
a) a number x has an odd multiple $(\cdot,+,=, 1)$
b) every positive number is a square of some number $(\cdot,+,=,>, 0)$
2. Prove or disprove $(x, y, z \in \mathbb{R})$
$\forall y \forall z \exists x x \cdot y=z$
3. Proof by induction
$11 \mid 2^{6 n+1}+3^{2 n+2}$,
4. Is the following formula a tautology? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee(\ldots) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)
$[((p \vee r) \Rightarrow q) \Rightarrow r] \Rightarrow(p \wedge r)$

Name \qquad

			col.
1.	2.	3.	4.

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set a) \mathbb{N} b) \mathbb{Z} and symbols indicated in brackets
a) a number x has an even divisor $(\cdot,+,=, 1)$
b) every positive number has a square $\operatorname{root}(\cdot,+,=,>, 0)$
2. Prove or disprove $(x, y, z \in \mathbb{R})$
$\exists x \forall y \forall z x \cdot y=x \cdot z$
3. Proof by induction $11 \mid 2^{6 n+1}+3^{2 n+2}$,
4. Is the following formula a tautology? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee(\ldots) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)
$[(p \Rightarrow(q \wedge r)) \Rightarrow r] \Rightarrow(p \wedge r)$
