Name \qquad

1. For $x, y \in \mathbb{R}^{+}$let $x \sim y \Leftrightarrow \exists q \in \mathbb{Q} x=q \cdot y$. Prove \sim is equivalence relation and find equivalence classes.
2. For $x, y \in \mathbb{N}$ let $x \preceq y \Leftrightarrow x+2 \leq y \vee x=y$. Prove, that \preceq is partial order. Draw a Hasse diagram of $P=(\{1 . .9,13\}, \preceq)$. Find minimal, maximal, largest, smallest elements if they exist in P. Find $\inf (3,4)=\ldots ., \sup (3,4)=\ldots . .$,
3. For $x, y \in \mathbb{N} x L y \Leftrightarrow x$ is the largest prime divisor of y. Is relations L a function? Is it one-to-one function? Explain your answer.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=x^{2}+y$. Find $f(A)$ and $f^{-1}(f(A))$ for $A=[-1,2] \times[0,2]$.

Name \qquad

1. For $x, y \in \mathbb{R}$ let $x \sim y \Leftrightarrow \exists n \in \mathbb{Z} x=n+y$. Prove \sim is equivalence relation and find equivalence classes.
2. For $x, y \in \mathbb{N}$ let $x \preceq y \Leftrightarrow 2 x \leq y \vee x=y$. Prove, that \preceq is partial order. Draw a Hasse diagram of $P=(\{1 . .10\}, \preceq)$. Find minimal, maximal, largest, smallest elements if they exist in P, Find $\inf (3,4)=\ldots ., \sup (3,4)=\ldots .$. ,
3. For $x, y \in \mathbb{N} x L y \Leftrightarrow x$ is the smallest even divisor of y. Is relations L a function? Is it one-to-one function? Explain your answer.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=(x y)^{2}$. Find $f(A)$ and $f^{-1}(f(A))$ for $A=[-1,2] \times[1,2]$.
