Name \qquad

row.... col....				
1.	2.	3.	4.	\sum

1. For $(a . b)(c, d) \in \mathbb{N}^{2}$ let $(a, b) \preceq(c, d) \Leftrightarrow a \geq c \wedge a+b \leq c+d$. Prove, that \preceq is partial order. Draw a Hasse diagram of $P=(\{(a, b): a, b \in\{1,2,3,4\}\}, \preceq)$. Find minimal, maximal, largest, smallest elements if they exist in P. Find $\inf ((2,1),(3,2))=$ \qquad $\sup ((2,1),(3,2))=$ \qquad
2. For $x, y \in \mathbb{N} x L y \Leftrightarrow x$ is the largest even divisor of y. Is relations L a function? Is it one-to-one function? What is the domain of L. Explain your answer.
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=(x-1)(y-1)\left(x^{2}+y^{2}-4\right)$. Find $f\left(\mathbb{R}^{2}\right)$ and $f^{-1}([0, \infty))$.
4. Prove by definition that set of odd integers is equipollent with the set of natural numbers divisible by 3 .
