Name \qquad

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets every polynomial of degree three has most three roots $(\cdot,+,=, 0)$
2. Find x such that the following is true (there might be more than one proper answers)
a) $\{\{1\},\{0, x\}\} \in\{\{0,\{1\}\},\{\{0\},\{1\}\},\{0,\{0,1\}\},\{1\},\{\{0\}, 1\},\{\{0\},\{0,1\}\}\}$
b) $\{\{1\},\{0, x\}\} \in\{\{0,\{1\}\},\{\{0\},\{1\}\},\{0,\{0,1\}\},\{1\},\{\{0\}, 1\},\{\{0\},\{0,1\}\}\}$
3. Find
$\bigcap_{i \in \mathbb{N}_{+}}\left[\frac{(-1)^{i}}{2 i}, 1+\frac{1}{2 i}\right]=$
$\bigcup_{i \in \mathbb{N}_{+}}\left[\frac{(-1)^{i}}{2 i}, 1+\frac{1}{2 i}\right]=$
4. Prove or disprove
$(C \backslash A) \cup[(A \cap B) \backslash C]=(A \cup C) \backslash[A \backslash(B \backslash C)]$
5. Prove or disprove
$[B \backslash(A \cup C)] \cup(A \cap B \cap C)=[B \backslash(A \backslash C)] \cap[B \backslash(C \cap A)]$

Name \qquad

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set \mathbb{N} and symbols indicated in brackets every polynomial of degree three has at leas one $\operatorname{root}(\cdot,+,=, 0)$
2. Find x such that the following is true (there might be more than one proper answers)
a) $\{\{0\},\{1, x\}\} \in\{\{0,\{1\}\},\{\{0\},\{1\}\},\{0,\{0,1\}\}, 0,\{\{0\}, 1\},\{\{0\},\{0,1\}\}\}$
b) $\{\{0\},\{1, x\}\} \subseteq\{\{0,1\},\{\{0\},\{1\}\},\{0,\{0,1\}\},\{0\},\{\{0\}, 1\},\{\{0\},\{0,1\}\}\}$
3. Find
$\bigcap_{i \in \mathbb{N}_{+}}\left[\frac{1}{2 i}, 2+\frac{(-1)^{i}}{i}\right]=$
$\bigcup_{i \in \mathbb{N}_{+}}\left[\frac{1}{2 i}, 2+\frac{(-1)^{i}}{i}\right]=$
4. Prove or disprove $(B \backslash A) \cup[(A \cap C) \backslash B]=(A \cup B) \backslash[A \backslash(C \backslash B)]$
5. Prove or disprove
$[A \backslash(B \cup C)] \cup(A \cap B \cap C)=[A \backslash(B \backslash C)] \cap[A \cap(C \backslash B)]$
