\qquad

CA.... row col...				
1.	2.	3.	4.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set a) set \mathbb{N} b) \mathbb{R} and symbols indicated in brackets
a) there is no square root of a prime number, which is natural $(\cdot,+,=, 1)$
b) every positive number has exactly two square roots $(\cdot,+,=, 1,>, 0)$
2. Prove or disprove $(x, y, z \in \mathbb{R})$
$\exists z \forall x \forall y z \cdot y \neq x$
3. Proof by induction
$14 \mid 3^{4 n+2}+5^{2 n+1}$
4. For how many assignments the formula is true? Transform it into DNF form (e.i. $\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee$ $(..) \ldots \vee(\ldots)$ where x_{i} are variable or their negations)

$$
\sim[(q \vee p) \Rightarrow(r \vee p)] \vee \sim(p \Rightarrow q)
$$

Name

1. For $X_{a, b}=\left\{(x, y) \in \mathbb{R}^{2}: y>a(x-b)+\ln b\right\}$ where $a, b \in \mathbb{R}$. Find:

$\bigcup_{a<0} X_{a, b}$
$\bigcap_{b>0} \cup_{a<0} X_{a, b}$

2. For what X the following equality holds.
$\emptyset \cup\{\emptyset,\{\emptyset,\{X\}\}\} \cup\{X, \emptyset\} \cup\{\{\emptyset\}\} \cup\{\{\emptyset\}, X\}=\{\emptyset,\{\emptyset,\{\emptyset\}\},\{\emptyset\}\}$
3. Prove or disprove
$(A \div B) \backslash C=(A \cup B) \div C$
$(A \div B) \backslash C=[A \backslash(B \cup C)] \cup[B \backslash(A \cup C)]$
4. Let $\mathcal{A} \subseteq 2^{\mathbb{R}}$. We say that \mathcal{A} has property (\star) if $(\forall X, Y \in \mathcal{A}) X \cap Y \in \mathcal{A}$. Prove or disprove:
a) family of rectangles with vertical and horizontal sides.
a) family of squares with vertical and horizontal sides.

| CA 12 row col.... | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1. | 2. | 3. | 4. | \sum |
| | | | | |

1. For $(x, y),(s, t) \in \mathbb{R}^{2}$ let $(x, y) R(s, t) \Leftrightarrow\left\lfloor\sqrt{x^{2}+y^{2}}\right\rfloor=\left\lfloor\sqrt{s^{2}+t^{2}}\right\rfloor$. Prove R is equivalence relation. Find equivalence class $[(a, b)]_{R}$. Draw $[(2,2)]_{R}$.
2. Find $f[A]$ and $f^{-1}[f[A]]$ for $A=[-1,2] \times[0,2]$ for $f \mathbb{R}^{2} \rightarrow \mathbb{R}$ where $f(x, y)=\frac{1}{x^{2}+y^{2}+1}$
3. Are given relations functions? For functions find their domain and settle if they are one-to-one functions ? $x, y, z \in \mathbb{R}$.
$(x, y) R z \Leftrightarrow z x y=\sqrt{x^{2}+y^{2}}$
$(x, y) S z \Leftrightarrow 4 y^{2}+x^{2} z^{2}=4 x y z$
4. Is given relation $R \subset \mathbb{N} \times \mathbb{N}$ reflexive, symmetric, transitive, antisymmetric, antireflexive ? $n, k \in \mathbb{N}$ $n R k \Leftrightarrow 2 \mid n \cdot k$.
\qquad

CA 1				2 row $\ldots . .$.
1.	2.	3.	4.	\sum

1. For $(x, y),(s, t) \in \mathbb{R}^{2}$ let $(x, y) R(s, t) \Leftrightarrow\lfloor x+y\rfloor=\lfloor s+t\rfloor$. Prove R is equivalence relation. Find equivalence class $[(a, b)]_{R}$. Draw $[(1,1)]_{R}$.
2. Find $f[A]$ and $f^{-1}[f[A]]$ for $A=[-1,2] \times[0,2]$ for for $f \mathbb{R}^{2} \rightarrow \mathbb{R}$ where $f(x, y)=\frac{1}{\left(x^{2}+1\right)}+y$
3. Are given relations functions? For functions find their domain and settle if they are one-to-one functions ? $x, y, z \in \mathbb{R}$.
$(x, y) S z \Leftrightarrow y^{2}+4 x^{2} z^{2}=4 x y z$
$(x, y) R z \Leftrightarrow z x y=x+y$
4. Is given relation $R \subset \mathbb{N} \times \mathbb{N}$ reflexive, symmetric, transitive, antisymmetric, antireflexive ? $n, k \in \mathbb{N}$ $n R k \Leftrightarrow 2 \nmid n \cdot k$.
