Name

	CA	. rov	N	col
1.	2.	3.	4.	\sum

1. Write the mathematical formulas corresponding to the following statements with the help of the following signs only: propositional connectives, quantifiers, variables varying through set a) set \mathbb{N} b) \mathbb{R} and symbols indicated in brackets

a) there is no square root of a prime number, which is $natural(\cdot, +, =, 1)$

b) every positive number has exactly two square roots $(\cdot,+,=,1,>,0)$

2. Prove or disprove $(x, y, z \in \mathbb{R})$ $\exists z \forall x \forall y \ z \cdot y \neq x$

3. Proof by induction $14|3^{4n+2} + 5^{2n+1}$ 4. For how many assignments the formula is true? Transform it into DNF form (e.i. $(x_1 \land x_2 \land x_3) \lor$ (..)... \lor (...) where x_i are variable or their negations)

$$\sim [(q \lor p) \Rightarrow (r \lor p)] \lor \sim (p \Rightarrow q)$$

2. For what X the following equality holds.

 $\emptyset \cup \{\emptyset, \{\emptyset, \{X\}\}\} \cup \{X, \emptyset\} \cup \{\{\emptyset\}\} \cup \{\{\emptyset\}, X\} = \{\emptyset, \{\emptyset, \{\emptyset\}\}, \{\emptyset\}\}$

3. Prove or disprove $(A \div B) \setminus C = (A \cup B) \div C$

 $(A \div B) \setminus C = [A \setminus (B \cup C)] \cup [B \setminus (A \cup C)]$

- 4. Let $\mathcal{A} \subseteq 2^{\mathbb{R}}$. We say that \mathcal{A} has property (\star) if $(\forall X, Y \in \mathcal{A}) \ X \cap Y \in \mathcal{A}$. Prove or disprove:
- a) family of rectangles with vertical and horizontal sides.
- a) family of squares with vertical and horizontal sides.

1. For $(x, y), (s, t) \in \mathbb{R}^2$ let $(x, y)R(s, t) \Leftrightarrow \lfloor \sqrt{x^2 + y^2} \rfloor = \lfloor \sqrt{s^2 + t^2} \rfloor$. Prove R is equivalence relation. Find equivalence class $[(a, b)]_R$. Draw $[(2, 2)]_R$.

2. Find f[A] and $f^{-1}[f[A]]$ for $A = [-1, 2] \times [0, 2]$ for $f\mathbb{R}^2 \to \mathbb{R}$ where $f(x, y) = \frac{1}{x^2 + y^2 + 1}$

3. Are given relations functions? For functions find their domain and settle if they are one-to-one functions? $x, y, z \in \mathbb{R}$. $(x, y)Rz \Leftrightarrow zxy = \sqrt{x^2 + y^2}$ $(x, y)Sz \Leftrightarrow 4y^2 + x^2z^2 = 4xyz$

4. Is given relation $R \subset \mathbb{N} \times \mathbb{N}$ reflexive, symmetric, transitive, antisymmetric, antireflexive ? $n, k \in \mathbb{N}$ $nRk \Leftrightarrow 2|n \cdot k$. Name

1. For $(x, y), (s, t) \in \mathbb{R}^2$ let $(x, y)R(s, t) \Leftrightarrow \lfloor x + y \rfloor = \lfloor s + t \rfloor$. Prove R is equivalence relation. Find equivalence class $[(a, b)]_R$. Draw $[(1, 1)]_R$.

2. Find f[A] and $f^{-1}[f[A]]$ for $A = [-1, 2] \times [0, 2]$ for for $f\mathbb{R}^2 \to \mathbb{R}$ where $f(x, y) = \frac{1}{(x^2+1)} + y$

3. Are given relations functions? For functions find their domain and settle if they are one-to-one functions? $x, y, z \in \mathbb{R}$. $(x, y)Sz \Leftrightarrow y^2 + 4x^2z^2 = 4xyz$ $(x, y)Rz \Leftrightarrow zxy = x + y$

4. Is given relation $R \subset \mathbb{N} \times \mathbb{N}$ reflexive, symmetric, transitive, antisymmetric, antireflexive ? $n, k \in \mathbb{N}$ $nRk \Leftrightarrow 2 \not| n \cdot k.$