Each task is worth 10 points.

- 1. Let $G = (W \cup U, E)$ where $W = \{w_1, w_2, \dots, w_n\}$, $U = \{u_1, u_2, \dots u_n\}$ and $E = \{\{w_i, u_j\} : 1 \le i, j \le n\}$. Calculate the number of Hamiltonian cycles in G.
- 2. Prove that for every graph G = (V,E) the relation R

xRy iff there exists an x-y path in G

is an equivalence relation on V.

- 3. Determine whether the following proposition is a tautology: $((p\Rightarrow q)\land (r\Rightarrow s))\Rightarrow ((p\lor r)\Rightarrow (q\lor s))$.
- 4. Find $\bigcup_{t \in N} A_t$ and $\bigcap_{t \in N} A_t$ where $A_t = \{(x,y) \in \mathbb{R}^2 : |y| > tx\}$ and N is the set of natural numbers (including 0).
- 5. We are seating 5 married couples around a table (the seats are identical). Let $\{M_1, M_2, M_3, M_4, M_5\}$ be the set of men and let $\{W_1, W_2, W_3, W_4, W_5\}$ be the set of their wives. In how many cases the man 1 will be seated next to his wife and the man 3 will not seat next to his wife?
- 6. Consider a 5×5 array. In how many ways can we fill the array with X-s and O-s so that no two consecutive rows are identical?