FUNCTIONS

Problem 1. Which of the following relations are functions:

(a) aRb iff $a^2=b^2$, R \subseteq **R**×**R**, (b) aRb iff $a^2=b^2$, R \subseteq **N**×**N**,

(c) aRb iff $a^2=b^2$, $R \subseteq \mathbf{R} \times \mathbf{R}^+$,

(d) aRb iff Re a = Im b, $R \subset C \times C$,

(e) Divisibility from N into N.

Problem 2. f:X \rightarrow Y is "onto" and g:Y \rightarrow Z is such, that $g \circ f$ is 1-1. Show that g is 1-1. Show that if f is not onto then g may not me 1-1.

Problem 3. Find an example of a function $f:X \rightarrow X$ which is onto but not 1-1.

Problem 4. Find an example of a function $f:X \rightarrow X$ which is 1-1 but not onto.

Problem 5. Show that if X is finite then every 1-1 function $f:X \rightarrow X$ is onto and vice versa.

Problem 6. $f: \mathbb{N}^2 \rightarrow \mathbb{N}$ is defined as follows: f((n,k))=n+k+1.

(a) is f onto?

(b) is f 1-1?

(c) find $f(\mathbf{N} \times \{1\})$

(d) find $f^{-1}(\{0\})$

(e) find $f^{-1}(\{2n:n \in \mathbb{N}\})$.

Problem 7. f:X \rightarrow Y, A,B are subsets of X; S,T are subsets of Y. Show that

(a) $f(A \cup B)=f(A) \cup f(B)$

(b) $f(A \cap B) \subseteq f(A) \cap f(B)$; show that one cannot replace " \subseteq " with "=",

(c) $A \subseteq B$ implies $f(A) \subseteq f(B)$,

(d) $f^{-1}(S \cup T) = f^{-1}(S) \cup f^{-1}(T)$,

(e) $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$,

(f) S \subseteq T implies f⁻¹(S) \subseteq f⁻¹(T).