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LECTURE 1.

• Propositions, logical connectives.

• Laws of propositional calculus.



A statement or proposition is a declarative sentence, one with a 

fixed "logical value" (meaning it is true or false - even if we do 

not know which). "The Universe is infinite" is a statement even 

though we do not know if true. On the other hand "a man is an 

idiot" is not because we do not know who the man is. The word 

"man" plays here the part of a variable. For some instances of 

"man" it may be true, for other it may be false. A statement is not 

supposed to contain (free) variables. If we say "every man is an 

idiot" it is different story. The variable "man" is bound by the 

quantifier "every". Hence "every man is an idiot" is a statement, 

hopefully false.

Comprehension. 

Construct other examples of non-statements.



Logical connectives

Formal logic is about how the truth value of a compound 

statement (called formulas or formulae) depends on truth values 

of its components. We form compound statements from 

elementary ones using so called logical connectives. To simplify 

the notation we use letters (p, q, r etc.) to represent elementary 

statements much like letters (a, b, x, y) to represent unspecified 

numbers in algebra. The letters are referred to as propositional 

variables (they stand for propositions just like numerical variables

stand for numbers). In logic, in place of arithmetic operations of 

addition or multiplication we use logical connectives, AND, OR, 

IF … THEN and the like. We use constants 0 and 1 to denote 

logical false and true, respectively.



Definition. (Logical connectives)

Conjunction, AND, ∧

p q p∧q

0 0 0

0 1 0

1 0 0

1 1 1

Disjunction, OR, ∨

p q p∨q

0 0 0

0 1 1

1 0 1

1 1 1

Implication, IF…THEN, ⇒
This one is tricky!

p q p⇒q

0 0 1

0 1 1

1 0 0

1 1 1

Negation, NOT, ∼, ¬

p ∼p

0 1

1 0

Double implication, IF AND ONLY IF, IFF ⇔

p q p⇔q

0 0 1

0 1 0

1 0 0

1 1 1



Notice that conjunction, disjunction and both implications take 

two arguments each (like addition or subtraction). Such operations 

are called binary operations. The negation takes only one (like 

assigning the opposite to a number, a → −𝑎). Such operations are 

called unary, for obvious reason.

Comprehension.

How many different binary operations can we define? Or is this 

number infinite?



Logical equivalence

Formal logic (propositional calculus) is constructed in the image 

of algebra. So far, we have seen constants (0 and 1 or true and 

false, variables and operations. What we lack is a way to compare 

our formulas. In algebra we use "=" to denote that, whatever 

numbers we replace the variables with, we get the same result on 

the left- and on the right-hand side of  =. In formal logic "=" 

means that the two formulas are identical, symbol for symbol, so 

it is not particularly exciting. 

The analogue of the relation of equality is the relation of "logical 

equivalence", ≡".



Definition.

𝜑(𝑝1, 𝑝2, … , 𝑝𝑘) ≡ 𝜓(𝑝1, 𝑝2, … , 𝑝𝑘) if and only if for every 

assignment of zeroes and ones to 𝑝1, 𝑝2, … , 𝑝𝑘 the resulting 

logical values of 𝜑 and 𝜓 are equal. We say then that 𝜑 and 𝜓 are 

logically equivalent.

Remark.

Logical equivalence should not be confused with double 

implication, even though they are closely related. If you write 

𝜑(𝑝1, 𝑝2, … , 𝑝𝑘) ⇔ 𝜓(𝑝1, 𝑝2, … , 𝑝𝑘) you have just created a new 

formula out of 𝜑 and 𝜓. If you write 𝜑(𝑝1, 𝑝2, … , 𝑝𝑘) ≡
𝜓(𝑝1, 𝑝2, … , 𝑝𝑘) you state that for every assignment of zeroes and 

ones …etc. The result of the first is a new formula, the result of 

the second is true or false.



Logical equivalence can be used to define logical connectives. For 

example, the table

can be replaced with: (0∧0≡0, 0∧1≡0, 1∧0≡0 and 1∧1≡1).

Instead, one can say that the conjunction of two statements is true 

if and only if both statements are true. Similar tricks can be done 

for other connectives.

Conjunction, AND, ∧

p q p∧q

0 0 0

0 1 0

1 0 0

1 1 1



Checking logical equivalence of formulas

The question in formal logic is: "Given two formulas, are they 

logically equivalent or not".

For example: Is 𝑝 ⇒ (𝑞 ∧ 𝑟) equivalent to (𝑝 ⇒ 𝑞) ∧ (𝑝 ⇒ 𝑟)?

Truth table (brutal force method):

p q r 𝑞 ∧ 𝑟 𝑝 ⇒ (𝑞 ∧ 𝑟) 𝑝 ⇒ 𝑞 𝑝 ⇒ 𝑟 (𝑝 ⇒ 𝑞) ∧ (𝑝 ⇒ 𝑟)

0 0 0 0 1 1

0 0 1 0 1 1

0 1 0 0 1 1

0 1 1 1 1 1

1 0 0 0 0 0

1 0 1 0 0 1

1 1 0 0 1 0

1 1 1 1 1 1



Another way of doing this (more subtle and more fun) is to 

develop a number laws for propositional calculus, much like 

properties of arithmetic operations in algebra, and attempt to 

transform one formula into the other. The laws themselves must 

be verified by truth tables.



Theorem.
For every three propositions p,q,r
commutativity law: 

1. 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝, 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝

2. associativity law:
𝑝 ∧ (𝑞 ∧ 𝑟) ≡ (𝑝 ∧ 𝑞) ∧ 𝑟, 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟

3. distributivity law:
𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟), 
𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

4. excluded middle: 𝑝 ∨∼p ≡ 1

5. contradiction: 𝑝 ∧∼p ≡ 0

6. absorption: 𝑝 ∧ 𝑝 ∨ 𝑞 ≡ 𝑝,  𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝

7. double negation: ∼(∼p) ≡ 𝑝



Comprehension.

Verify the last theorem using the truth-table method.

Comments.

Putting q=¬𝑝 in 𝑝 ∧ 𝑝 ∨ 𝑞 ≡ 𝑝, we get 𝑝 ∧ 𝑝 ∨ ¬p ≡ 𝑝 and 

from the excluded middle we get 𝑝 ∧ 1 ≡ 𝑝, the identity law for 

conjunction. 

Putting q=1 in 𝑝 ∨ 𝑝 ∧ 𝑞 ≡ 𝑝 we get 𝑝 ∨ 𝑝 ∧ 1 ≡ 𝑝. 

Combining this with the freshly developed identity law we get 

𝑝 ∨ 𝑝 ≡ 𝑝, the simplification law for disjunction.

Comprehension.

In a similar way develop the identity law for disjunction, 𝑝 ∨ 0 ≡
𝑝 and the simplification law for conjunction, p ∧ 𝑝 ≡ 𝑝.



Theorem.(De Morgan's Law)

For every two propositions p, q

(a) ¬ 𝑝 ∧ 𝑞 ≡ ¬𝑝 ∨ ¬𝑞 and   (b) ¬ 𝑝 ∨ 𝑞 ≡ ¬𝑝 ∧ ¬𝑞.

Proof. Simplified truth-table method.

Instead of checking all possible cases we notice that the left-hand 

side of (a) is false only when 𝑝 ∧ 𝑞 is true, i.e. when both p, q are 

true. On the other hand the disjunction ¬𝑝 ∨ ¬𝑞 is false only

when both ¬𝑝 and ¬𝑞 are false, i.e. when both p, q are true. 

Hence the two sides are equivalent.

(b) can be deduced from (a): ¬ 𝑝 ∨ 𝑞 ≡ ¬ ¬(¬𝑝) ∨ ¬(¬𝑞 ) ≡
¬ ¬(¬𝑝 ∧ ¬𝑞 ) ≡ ¬𝑝 ∧ ¬𝑞. QED



Theorem.(Laws involving the "if … then" connective)

For every two propositions p, q

(a) 𝑝 ⇒ 𝑞 ≡ ¬𝑝 ∨ 𝑞 (conditional disjunction)

(b) 𝑝 ⇒ 𝑞 ≡ ¬𝑞 ⇒ ¬𝑝 (contrapositive law)

Proof.

(a)Simplified truth-table method. The LHS is only false when p is 

true and q is false, the RHS is only false when ¬𝑝 is false and q is 

false, in other words when p is true and q is false.

(b) By (a), ¬𝑞 ⇒ ¬𝑝 ≡ ¬ ¬𝑞 ∨ ¬𝑝 ≡ 𝑞 ∨ ¬𝑝 ≡ ¬𝑝 ∨ 𝑞 ≡

𝑝 ⇒ 𝑞. QED

Of course this can be done by truth-table as well, but the 

transformation method is much more fun.



Remark.

The contraposition law is the background for so called indirect 

proofs, or proofs by contradiction. In these proofs, instead of 

showing that the assertion of out theorem follows from our 

assumptions we show that if the assertion is not true then our 

assumption could not have been satisfied. People tend to make 

silly logical mistakes here so be careful.



Tautologies

Definition.

A formula 𝜑(𝑝1, 𝑝2, … , 𝑝𝑘) is called a tautology iff 

𝜑 𝑝1, 𝑝2, … , 𝑝𝑘 ≡ 1.
In other words a tautology is a formula, such that for every 

assignment of 0-s and 1-s to its variables the logical value of the 

resulting statement is 1 (true).

Fact.

Now we can explain the relation between ≡ and ⇔ :

𝜑(𝑝1, 𝑝2, … , 𝑝𝑘) ≡ 𝜓(𝑝1, 𝑝2, … , 𝑝𝑘) if and only if 

𝜑(𝑝1, 𝑝2, … , 𝑝𝑘) ⇔ 𝜓(𝑝1, 𝑝2, … , 𝑝𝑘) is a tautology.



Every algebraic formula can be reduced to a sum of products. 
This is possible thanks to distributivity of multiplication with 
respect to addition. For example (a+b)(a+c)+e = 𝑎2 + 𝑎𝑐 + 𝑎𝑏 +
𝑏𝑐 + 𝑒. Similarly, every logical formula can be reduced (shown 
to be logically equivalent) to a conjunction of clauses, i.e. 
expression involving only individual variables, their negations 
and the OR connectives. Such an expression is called a 
conjunctive normal form of the formula.

This trick is often used to verify logical equivalence of formulas 
– you reduce both formulas to their CNF-s and compare the CNF-
s term to term.



Examples.

1. p, ¬𝑝, 𝑝 ∧ ¬q, 𝑝 ∨ ¬q are CNF formulas

2. 𝑝 ⇒ 𝑞 is not, but 𝑝 ⇒ 𝑞 ≡ ¬𝑝 ∨ 𝑞 and ¬𝑝 ∨ 𝑞 is a (single 

clause) CNF.

3. (𝑝 ⇒ 𝑞) ⇒ 𝑟 ≡ ¬(𝑝 ⇒ 𝑞) ∨ 𝑟 ≡ ¬(¬𝑝 ∨ 𝑞) ∨ 𝑟 which is not 

good enough because the first ¬ sits in front of an expression, 

not an individual variable. Using de Morgan's Law we get 

(¬¬𝑝 ∧ ¬𝑞) ∨ 𝑟 ≡ (𝑝 ∧ ¬𝑞) ∨ 𝑟 ≡ (𝑝 ∨ 𝑟) ∧ (¬𝑞 ∨ 𝑟 ) – a 

CNF

4. Is the formula from 3 equivalent to 𝑝 ⇒ (𝑞 ⇒ 𝑟)?
𝑝 ⇒ (𝑞 ⇒ 𝑟) ≡ ¬𝑝 ∨ (𝑞 ⇒ 𝑟) ≡ ¬𝑝 ∨ (¬𝑞 ∨ 𝑟) ≡ ¬𝑝 ∨ ¬𝑞 ∨
𝑟 which means it is not. To be on the safe side: the last CNF is 

only false for p,q,r = 1,1,0 while the first is also false for 

example for 0,1,0


