
LECTURE 2.

• Propositional functions

• Quantifiers

• Generalized set operations



Definition. A propositional function (a predicate) is an 

expression which contains one or more free variables, i.e. such 

variables that assigning specific values to those variables turns the 

expression into a statement. In other words, a propositional 

function is a function from some set X into a set of propositions.

Examples.

1. x > 7 is a propositional function defined on ℝ (or another set 

of numbers. Replacing x with a number turns this expression 

into a (true or false) statement.

2. 𝑥 > 𝑦 is a propositional function defined on ℝ ×ℝ.

3. 𝑥𝑛 > 0 is a propositional function defined on ℝ × ℤ.

4. "For every x, 𝑥 > 𝑦" is a propositional function defined on ℝ. 

y is a free variable here; x is a variable, but it has no effect on 

the logical value (if any) of the expression. x is said to be 

bound by the phrase "For every".



We introduce two new symbols called quantifiers:

∀, meaning for all or for every. It is called the general (or 

universal) quantifier.

∃, meaning there exists. It is called the existential quantifier.

Given a propositional function 𝜑(𝑥) defined on a set X we may 

write 

• (∀𝑥 ∈ X)𝜑(𝑥) (for every element 𝑥 in X it is true that 𝜑(𝑥))

• (∃𝑥 ∈ X)𝜑(𝑥) (there is an element 𝑥 in X for which 𝜑(𝑥))

For example:

∀𝑥 ∈ ℝ (𝑥 > 7) is a statement, a false one

∃𝑥 ∈ ℝ (𝑥 > 7) is a true statement



𝑥 > 𝑦 is a propositional function defined on ℝ × ℝ )*. It has two 

free variables. We can turn it into a statement in various ways:

1. ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 > 𝑦) – false

2. ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑥 > 𝑦) – true

3. ∀𝑥 ∈ ℝ ∃𝑦 ∈ ℝ (𝑥 > 𝑦) – true

4. ∃𝑦 ∈ ℝ ∀𝑥 ∈ ℝ (𝑥 > 𝑦) – false

There is an important lesson to be learned here: 

Changing the order of quantifiers may affect the logical value of 

our statement!

The same applies to 

5. ∀𝑦 ∈ ℝ ∃𝑥 ∈ ℝ (𝑥 > 𝑦) – true

6. ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 > 𝑦) – false

Incidentally, it should be "𝜑 is a propositional function such that 𝜑(𝑥,𝑦)=𝑥>𝑦"; 𝑥>𝑦 is the value of 𝜑 for some x and y.



On the other hand, in ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ 𝜑(𝑥, 𝑦) and  in (
)

∃𝑥
∈ ℝ ∃𝑦 ∈ ℝ 𝜑(𝑥, 𝑦)the order of quantifiers makes no 

difference, and such expressions are usually shortened to (
)

∀𝑥, 𝑦
∈ ℝ 𝜑(𝑥, 𝑦) and ∃𝑥, 𝑦 ∈ ℝ 𝜑(𝑥, 𝑦).

In order to avoid ambiguities, the propositional function a 

quantifier applies to should be enclosed in parenthesis which 

define the range of the quantifier. For example writing

∀𝑥 ∈ X 𝜑 𝑥 ∧ 𝜓(𝑥)

might mean [ ∀𝑥 ∈ X 𝜑 𝑥 ] ∧ 𝜓(𝑥), which does not make much 

sense but is formally correct, or ∀𝑥 ∈ X (𝜑 𝑥 ∧ 𝜓(𝑥)) , which 

is what we would expect.

In general, using one variable letter in two different meanings, 

while formally acceptable, is asking for trouble both in logic and 

in programming.



Remarks.

1. ∀ is a generalization of conjunction. If X={1,2,3,4,5}, instead of 

(1>0 ∧ 2>0 ∧ 3>0 ∧ 4>0 ∧ 5>0) we may say ∀𝑥 ∈ 𝑋 (𝑥 > 0).

2. In the same sense, ∃ is a generalization of disjunction:

(1>3 ∨ 2>3 ∨ 3>3 ∨ 4>3 ∨ 5>3) ≡ ∃𝑦 ∈ 𝑋 (𝑦 > 3)

3. The name of a variable bound by a quantifier does not 
matter: 
∃𝑦 ∈ 𝑋 𝜑 𝑦 ≡ ∃𝑧 ∈ 𝑋 𝜑 𝑧

∀𝑦 ∈ 𝑋 𝜑 𝑦 ≡ و∀ ∈ 𝑋 𝜑 و .

4. We can re-define propositions: a proposition is a declarative 

sentence containing no free variables.



Quantifiers and sets

Recall that when we discuss sets, we assume that all considered sets 

are subsets of some universal set X.

We can specify a particular subset A of X by listing all its elements 

in curly brackets, but we can also say that A is the set of those and 

only those elements of X that satisfy some condition. 

It looks like this:

A = {𝑥 ∈ 𝑋:𝜑 𝑥 }

where 𝜑 is a propositional function defined on X.



Examples.

A = 𝑛 ∈ 𝑍:¬(2 n) where | denotes the divisibility relation (2 
divides n). A is the set of all odd integers (we use colon here 
instead of | to avoid double meaning of |)

ℝ+ = {𝑑 ∈ ℝ|𝑑 > 0}, here 𝜑 𝑥 = x>0

∅ = 𝑐 ∈ ℝ|𝑐2 < 0 , here 𝜑 𝑥 = 𝑥2 < 0

𝐶0,1 = 𝑥, 𝑠 ∈ ℝ2|𝑥2 + 𝑠2 = 1 , here the condition is a 
propositional function of two variables, 𝜑 𝑝, 𝑞 = (𝑝2 + 𝑞2 = 1). 
𝐶0,1 is the unit circle

𝐷0,1 = 𝑥, 𝑠 ∈ ℝ2|𝑥2 + 𝑠2 ≤ 1 here 𝜑 𝑧, و = (𝑧2 + و
2
= 1). 

𝐷0,1 is the unit disc.

Comprehension.

Define the set of primes in this way (use only mathematical and 
logical symbols, including quantifiers if need be).



We used this notation when we defined set operations:

• A∪B = {𝑥 ∈ 𝑋|𝑥 ∈ A ∨ 𝑥 ∈ 𝐵}

• A∩B = {𝑥 ∈ 𝑋|𝑥 ∈ A ∧ 𝑥 ∈ 𝐵}

• A\B = {𝑥 ∈ 𝑋|𝑥 ∈ A ∧ 𝑥 ∉ 𝐵}

• A' = {𝑥 ∈ 𝑋|𝑥 ∉ 𝐴}. 

Let A = {𝑥 ∈ 𝑋: 𝜑 𝑥 } and let B = {𝑥 ∈ 𝑋:𝜓 𝑥 }. Then

• A∪B = {𝑥 ∈ 𝑋: 𝜑 𝑥 ∨ 𝜓 𝑥 }

• A∩B = {𝑥 ∈ 𝑋: 𝜑 𝑥 ∧ 𝜓 𝑥 }

• A\B = {𝑥 ∈ 𝑋: 𝜑 𝑥 ∧ ¬𝜓 𝑥 }

• A' = {𝑥 ∈ 𝑋:¬𝜑 𝑥 }.



Quantifiers can be defined in terms of sets:

∀𝑥 ∈ X (𝜑 𝑥 ) ≡ 𝑞 ∈ 𝑋:𝜑 𝑞 = 𝑋. 

∃𝑥 ∈ X 𝜑 𝑥 ≡ 𝑡 ∈ 𝑋:𝜑 𝑡 ≠ ∅.

Since quantifiers generalize conjunction and disjunction some laws 

of propositional calculus should apply to quantifiers. "Some" 

because many, like commutativity and associativity of conjunction 

and disjunction, are meaningless. Some other are just as important 

in predicate calculus as they are in propositional calculus.  



Theorem. (De Morgan's Law for quantifiers)

For every predicate 𝜑 defined on a set X

1. ¬ ∀𝑥 ∈ 𝑋 𝜑 𝑥 ≡ ∃𝑡 ∈ 𝑋 (¬𝜑(𝑡))

2. ¬ ∃𝑦 ∈ 𝑋 𝜑 𝑦 ≡ ∀𝑞 ∈ 𝑋 (¬𝜑 𝑞 )

Proof. 

Part 2. ¬ ∃𝑥 ∈ 𝑋 𝜑 𝑥 means 𝐴 = 𝑥 ∈ 𝑋:𝜑 𝑥 = ∅. Since 

A is a subset of X,  A' = X. Now, A' = 𝑥 ∈ 𝑋 𝑥 ∉ 𝐴 = {
}

𝑥
∈ X:¬𝜑 𝑥 . Hence, X = 𝑥 ∈ X:¬𝜑 𝑥 , which means that 

∀𝑥 ∈ 𝑋 (¬𝜑 𝑥 ).

Part 1. We negate both sides of 2., with 𝜑 𝑥 replaced with ¬𝜑 𝑥

¬¬ ∃𝑦 ∈ 𝑋 ¬𝜑 𝑦 ≡ ¬ ∀𝑞 ∈ 𝑋 ¬ ¬ 𝜑 𝑞 . From the 

double negation law we obtain

∃𝑦 ∈ 𝑋 ¬𝜑 𝑦 ≡ ¬( ∀𝑞 ∈ 𝑋 𝜑 𝑞 ). QED



Example.
Consider a function f with the following property:

(∀𝜀 > 0)(∃𝛿 > 0)(∀𝑥 ∈ ℝ)(|x|< 𝛿 ⇒ 𝑓 𝑥 < 𝜀)

Soon enough you will learn that this means "f approaches 0 as x 
approaches 0". How do we write "it is not true that f approaches 0 
as x approaches 0"? Well, we negate the whole expression:

¬[(∀𝜀 > 0)(∃𝛿 > 0)(∀𝑥 ∈ ℝ)(|x|< 𝛿 ⇒ 𝑓 𝑥 < 𝜀)] ≡
∃𝜀 > 0 ¬[(∃𝛿 > 0)(∀𝑥 ∈ ℝ)(|x|< 𝛿 ⇒ 𝑓 𝑥 < 𝜀)] ≡
∃𝜀 > 0 ∀𝛿 > 0 ¬[(∀𝑥 ∈ ℝ)(|x|< 𝛿 ⇒ 𝑓 𝑥 < 𝜀)] ≡
∃𝜀 > 0 ∀𝛿 > 0 ∃𝑥 ∈ ℝ ¬(|x|< 𝛿 ⇒ 𝑓 𝑥 < 𝜀) ≡

(using   𝑝 ⇒ 𝑞 ≡ ¬𝑝 ∨ 𝑞)

∃𝜀 > 0 ∀𝛿 > 0 ∃𝑥 ∈ ℝ ¬[¬(|x|<𝛿) ∨ 𝑓 𝑥 < 𝜀)] ≡
∃𝜀 > 0 ∀𝛿 > 0 ∃𝑥 ∈ ℝ (|x| < 𝛿) ∧ 𝑓 𝑥 ≥ 𝜀)]



Theorem.

For every two formulas 𝜑 and 𝜓 defined on some set X

1. (∀x)(𝜑(x) ∧ 𝜓(x)) ⇔ ((∀x) 𝜑(x) ∧ (∀x) 𝜓(x)) 

2. (∃x)(𝜑(x) ∨ 𝜓(x)) ⇔ ((∃x) 𝜑(x) ∨ (∃x) 𝜓(x)) 

3. ((∀x) 𝜑(x) ∨ (∀x) 𝜓(x)) ⇒ (∀x)(𝜑(x) ∨ 𝜓(x)) 

4. (∃x)(𝜑(x) ∧ 𝜓(x)) ⇒ ((∃x) 𝜑(x) ∧ (∃x) 𝜓(x))

Proof.

1. (⇒, by contradiction) Suppose RHS is false. By de Morgan 

Law, there is p such that 𝜑 𝑝 is false (then 𝜑(p) ∧ 𝜓(p) is false) 

or, there is q such that 𝜓(q) is false, hence 𝜑(q) ∧ 𝜓(q) is false. In 

both cases the LHS is false.

(⇐ , by contradiction) . If there is t such that (𝜑(t) ∧ 𝜓(t)) is false, 

then 𝜑(t) is false OR 𝜓(t) is false, so RHS is false.



Comprehension.

1. Prove the remaining parts.

2. Can we replace ⇒ with ⇔ in part 3 and/or part 4?



Laws of set algebra.

The set operations of union and intersection are very closely related 

to disjunction and conjunction, the set complement operation plays 

the part of negation and ∅ and X act in the same capacity as logical 

constants 0 and 1, respectively. It is only to be expected that laws of 

propositional calculus have their counterparts in set algebra. Set 

equality replaces logical equivalence.



Theorem.
For every three subsets A,B and C of X

1. commutativity law:
𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴,  𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴

2. associativity law:
𝐴 ∩ 𝐵 ∩ 𝐶 = 𝐴 ∩ (𝐵 ∩ 𝐶), 𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 ∪ (𝐵 ∪ 𝐶)

3. distributivity law:
𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∩ 𝐵 ∪ (𝐴 ∩ 𝐶), 
𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ (𝐴 ∪ 𝐶)

4. 𝐴 ∪ 𝐴′ = 𝑋

5. 𝐴 ∩ 𝐴′ = ∅

6. absorption law: 𝐴 ∩ 𝐵 ∪ 𝐴 = A,   𝐴 ∪ 𝐵 ∩ 𝐴 = A

7. double complement: 𝐴′ ′ = 𝐴



There are some differences, though. We do not use the set analogue 

of the conditional connective IF … THEN (implication). Implication 

is used in the definition of the inclusion relation ⊆.

𝐴 ⊆ 𝐵 ≡ (∀𝑥 ∈ 𝑋)(𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵)



Definition.

The symmetric difference of sets A and B is defined as follows:

𝐴 ÷ 𝐵 = 𝐴 ∖ 𝐵 ∪ (𝐵 ∖ 𝐴)

Properties.

1. 𝐴 ÷ 𝐵 = A ∪ 𝐵 ∖ (𝐴 ∩ 𝐵)

2. 𝐴 ÷ 𝐵 consists of those elements of X who belong to exactly 

one of the two sets A and B

3. 𝐴 ÷ 𝐵 = 𝐵 ÷ 𝐴

4. 𝐴 ÷ 𝐵 ÷ 𝐶 = 𝐴 ÷ (𝐵 ÷ 𝐶)

5. 𝐴 ÷ ∅ = ∅ ÷ 𝐴 = 𝐴 (∅ is the identity element for ÷)

6. 𝐴 ÷ 𝐴 = ∅ (every set is its own inverse element)



The following slides were NOT presented on Oct 15 lecture

Generalized set operations

Suppose that with every element of some set I (called the set of 
indices) we associate a subset of our universal set. For example we 
can consider sets A1, A2, A3 and our I = {1,2,3} but we can just as 
well put At=[-t;t] and let t range over [0;∞). Such a construction is 
called an indexed family of subsets of X. We can generalize the idea 
of union (intersection) of two sets to any indexed family of sets.

Definition.
The generalized union of the family 𝐴𝑖 𝑖∈𝐼 is the set 

𝑖∈𝐼ڂ 𝐴𝑖 = {𝑥 ∈ 𝑋| ∃𝑖 ∈ 𝐼 𝑥 ∈ 𝐴𝑖}

The generalized intersection of the family 𝐴𝑖 𝑖∈𝐼 is the set 

𝑖∈𝐼𝐴𝑖ځ = {𝑥 ∈ 𝑋| ∀𝑖 ∈ 𝐼 𝑥 ∈ 𝐴𝑖}



The expressions look complicated but what they really say is that 

x belongs to ڂ𝑖∈𝐼𝐴𝑖 if and only if it belongs to at least one set from 

the collection of sets 𝐴𝑖 𝑖∈𝐼

and

x belongs to ځ𝑖∈𝐼𝐴𝑖 if and only if it belongs to each set from the 

collection of sets 𝐴𝑖 𝑖∈𝐼.

For two-element families of sets this is clearly ordinary union and 

intersection: 𝐴𝑖 𝑖∈{1,2} = {𝐴1, 𝐴2} 𝑖∈{1,2}𝐴𝑖ڂ , = 𝐴1 ∪ 𝐴2 and 

𝑖∈{1,2}𝐴𝑖ځ = 𝐴1 ∩ 𝐴2.



Example. 

Consider our example of 𝐴𝑡 𝑡∈[0;∞) and 𝐴𝑡 = −𝑡; 𝑡 . Obviously, 

the only number belonging to each of these closed intervals is 0, 

hence ځ𝑖∈[0;∞)𝐴𝑖 = 0 .

On the other hand, every real number x belongs to some closed 

interval −𝑡; 𝑡 (for example 𝑥 ∈ [−𝑥; 𝑥]), hence ڂ𝑖∈[0;∞)𝐴𝑖 = ℝ.


