
LECTURE 3.

• Generalized set operations

• Relations

• Properties of relations



Generalized set operations

Suppose that with every element of some set I (called the set of 

indices) we associate a subset of our universal set. For example we 

can consider some three sets A1, A2, A3 using I = {1,2,3}, but we can 

just as well put Ai=[-i;i] and I = [0;∞). Such a construction is called 

an indexed family of subsets of X and is denoted by 𝐴𝑖 𝑖∈𝐼. We 

generalize the concept of union (intersection) of two sets to any 

indexed family of sets.

Definition.

The generalized union of the family 𝐴𝑖 𝑖∈𝐼 is the set 

𝑖∈𝐼𝐴𝑖ڂ = {𝑥 ∈ 𝑋| ∃𝑖 ∈ 𝐼 𝑥 ∈ 𝐴𝑖}

The generalized intersection of the family 𝐴𝑖 𝑖∈𝐼 is the set 

𝑖∈𝐼ځ 𝐴𝑖 = {𝑥 ∈ 𝑋| ∀𝑖 ∈ 𝐼 𝑥 ∈ 𝐴𝑖}



The expressions look complicated but what they really say is that 

x belongs to ڂ𝑖∈𝐼𝐴𝑖 if and only if it belongs to at least one set from 

the collection 𝐴𝑖 𝑖∈𝐼

and

x belongs to ځ𝑖∈𝐼𝐴𝑖 iff it belongs to each set from 𝐴𝑖 𝑖∈𝐼.

For two-element families of sets this reduces to ordinary union and 

intersection: 𝐴𝑖 𝑖∈{1,2} = {𝐴1, 𝐴2} 𝑖∈{1,2}𝐴𝑖ڂ , = 𝐴1 ∪ 𝐴2 and 

𝑖∈{1,2}𝐴𝑖ځ = 𝐴1 ∩ 𝐴2.



Example. 

Consider our example of 𝐴𝑡 𝑡∈[0;∞) and 𝐴𝑡 = −𝑡; 𝑡 . Obviously, 

the only number belonging to each of these closed intervals is 0, 

hence ځ𝑖∈[0;∞)𝐴𝑖 = 0 .

On the other hand, every real number x belongs to some closed 

interval −𝑡; 𝑡 (for example 𝑥 ∈ [−𝑥; 𝑥]), hence ڂ𝑖∈[0;∞)𝐴𝑖 = ℝ.



Relations 

When dealing with sets we often distinguish some elements as 

having a particular property. The "property" can be described 

analytically, like "having 3 as the reminder from division  by 5" 

could be a property of integers. Some integers do and other don't 

have this property. Clearly the property defines a subset of X, 

namely the set consisting of all elements of X that have the property 

(or satisfy the condition). It works the other way around, given a 

subset A of X we can always construct a condition (property) 𝜑 such 

that A is the set of all elements of X which satisfy the 𝜑 (even if 

sometimes it is a silly-looking one like 𝜑 x = (x ∈ 𝐴)). There is a 

very close relationship between subsets of X and properties of 

elements of X.



The word "relation" is used in mathematics in the meaning of "a 
property of pairs of elements". Hence, the following definition:

Definition.
Given any two sets X and Y, a relation R between elements of X 
and elements of Y is a subset of X×Y. 

X and Y may be equal or different. 

If X=Y, we say that R is a relation on X.

If R=∅ we call R the empty relation. It is not particularly exciting, 
nobody in X is related to anybody in Y. On the other end of the 
spectrum we have the full relation R=X×Y, where everybody in X is 
related to everybody in Y – not very exciting either.

Traditionally, instead of writing (x,y) ∈ 𝑅 we write 𝑥𝑅𝑦, as in x<y 
(for numbers), 𝑝|𝑞 (for integers) or 𝐴 ⊆ 𝐵 for sets.



Suppose R and S are two relations between sets X and Y. Since 
relations are sets (subsets of 𝑋 × Y), expressions like 𝑅 ∪ 𝑆, 𝑅 ∩
𝑆, R′ or 𝑅 ∖ 𝑆 or even 𝑅 ⊆ 𝑆 make perfect sense. 

For example, 𝑥 𝑅 ∪ 𝑆 𝑦 ≡ 𝑥𝑅𝑦 ∨ 𝑥𝑆𝑦 because 𝑥 𝑅 ∪ 𝑆 𝑦 means 
𝑥, 𝑦 ∈ 𝑅 ∪ 𝑆, which means 𝑥, 𝑦 ∈ 𝑅 or 𝑥, 𝑦 ∈ 𝑆, i.e. 𝑥𝑅𝑦 ∨
𝑥𝑆𝑦.

EBE (Even Better Example):
Given two relations on ℝ, ≤ and ≥, what is ≤∩≥? Looks silly, 
doesn't it? The answer looks even more silly: ≤∩≥==. To avoid 
silly-looking answers we often use extra symbols to distinguish 
between the equality relation on some set and plain saying that 
something is the same as something else. I could introduce LTE for 
"less than or equal to" relation, "GTE" for "greater than or equal to" 
and "EQ" for the equality relation. Then we say 𝐿𝑇𝐸 ∩ GTE = 𝐸𝑄
which looks much better.



YAE (Yet Another Example)

We use X= ℝ. The expression ≤=<∪= makes perfect sense. Well, 

perhaps it does if we use the naming convention from the last slide: 

LTE=LT∪EQ. Thus literarily means "less than or equal is the same 

as less than or equal". What can be more true than 𝑝 ≡ 𝑝?

We can also say things like LT ⊆ 𝐿𝑇𝐸 or 𝐿𝑇 ∩ 𝐺𝑇 = ∅ and so on.

First, we will study relations on one set, i.e. we will assume X=Y 

and we will classify them from the point of view of various 

"properties of relations". Next, we will introduce one type of 

relations between elements from (potentially) different set, namely 

functions.



Properties of relations

Definition.

Let R be a relation on a set X, i.e. 𝑅 ⊆ 𝑋 × 𝑋. We say that:

1. R is reflexive iff ∀𝑥 ∈ 𝑋 𝑥𝑅𝑥

2. R is symmetric iff (∀𝑥, 𝑦 ∈ 𝑋)(𝑥𝑅𝑦 ⇒ 𝑦𝑅𝑥)

3. R is transitive iff ∀𝑥, 𝑦, 𝑧 ∈ 𝑋 [ 𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧 ⇒ 𝑥𝑅𝑧]

4. R is antisymmetric iff ∀𝑥, 𝑦 ∈ 𝑋 [(𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥) ⇒ 𝑥 = y]

5. R is total iff (∀𝑥, 𝑦 ∈ 𝑋)(𝑥𝑅𝑦 ∨ 𝑦𝑅𝑥)

Occasionally we will use the idea of the inverse relation in the 
following sense:

If 𝑅 is a relation on X then the inverse relation 𝑅−1 = { 𝑝, 𝑞 ∈ 𝑋 ×
𝑋| 𝑞, 𝑝 ∈ 𝑅}



Examples.

1. Reflexivity. EQ is reflexive, ≤ is reflexive, ⊆ is reflexive. 
The congruence modulo n relation on ℤ where n is a natural 
number: 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) iff 𝑛|(𝑎 − 𝑏). Clearly, for every n 
congruence mod n is reflexive. 
The symbol p(mod n) is also used to denote the remainder of the 
division of p by n. Hence, we can say 
𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) iff 𝑎 − 𝑏 𝑚𝑜𝑑 𝑛 = 0.
Is divisibility relation | reflexive? It depends. It is in ℕ it is not in 
ℤ because 0 is not divisible by 0. Of course divisibility on ℕ and 
divisibility on ℤ are two different relations. Remember: a 
relations is a set!
Relations <, ≠, xRy iff y=x2 are not reflexive.

Fact. R is reflexive iff 𝐸𝑄 ⊆ 𝑅. This implies that the inverse of 
a reflexive relation is reflexive as well.



2. Symmetricity. EQ is symmetric, ≤ is not, ⊆ is not, < is not. 

Congruence mod n is symmetric for every n (if n divides 𝑎 − 𝑏
then n divides 𝑏 − 𝑎).

Divisibility on ℕ is not symmetric (2|4 but ¬4|2).

≠ (meaning the relation of "being different from" is symmetric.

Fact. R is symmetric iff 𝑅 ⊆ 𝑅−1. 

In fact, we can say that R is symmetric iff 𝑅 = 𝑅−1.

Proof. (⇒)Suppose R is symmetric and aRb. Then bRa, i.e. 

𝑎𝑅−1𝑏. This proves 𝑅 ⊆ 𝑅−1. Now, suppose 𝑝𝑅−1𝑞. This 

means 𝑞𝑅𝑝. Since R is symmetric, we obtain 𝑝𝑅𝑞, i.e. 𝑅−1 ⊆ R. 

The other implication ⇐ is just as easy.



3. Transitivity. EQ, <, ≤,≥,⊆ are transitive. ≠ is not.

Is ≡𝑛 (congruence mod n) transitive? Suppose 𝑎 ≡𝑛 𝑏 and 

𝑏 ≡𝑛 𝑐. This translates into 𝑛|𝑎 − 𝑏 and 𝑛|𝑏 − 𝑐. In other 

words, 𝑎 − 𝑏 = 𝑘𝑛 and 𝑏 − 𝑐 = 𝑙𝑛 for some k and l. Adding the 

last two equations we get 𝑎 − 𝑏 + 𝑏 − 𝑐 = 𝑙𝑛 + 𝑘𝑛. Simplifying 

this we get 𝑎 − 𝑐 = 𝑛(𝑙 + 𝑘), which means n divides a-c, i.e. 

𝑎 ≡𝑛 𝑐.

Divisibility is transitive.

Is the relation "being friendly with" transitive? Is "a friend of my 

friend" a friend of mine? Suppose you meet another boyfriend of 

your girlfriend … Oops, awkward.

Transitivity is hard to express in terms of set operations on relations. 

Probably because it says something about a pair composed of the 

first element of one related pair and the second element of another…



4. Antisymmetricity. EQ is antisymmetric. So are ≤, ≥ and ⊆. 

What about < on ℝ? Suppose a<b and at the same time b<a. 

Impossible? Good, it means that the statement (a<b)∧ (b<a) is 

FALSE. But every implication with false left-hand side is true 

hence, < is antisymmetric.

Is ≡𝑛 antisymmetric? Obviously not: 3 ≡2 5 and 5 ≡2 3 but 3 

is not equal 5.

Divisibility is antisymmetric.

Fact.

R is antisymmetric iff 𝑅 ∩ 𝑅−1 ⊆ 𝐸𝑄



5. Totality. EQ is total. So are ≤ and ≥.
⊆ is not (unless |X| ≤1), because if you have two different 

elements a and b in X then {a} and {b} are not related neither 

one way nor the other.

≡𝑛 , divisibility are not total (in general). But divisibility is a 

total relation on, for example, the set {2𝑛|𝑛 ∈ ℕ ∪ {0}}.

Fact.

R is total iff 𝑅 ∪ 𝑅−1 = 𝑋 × 𝑋



Equivalence relations

Definition.

A relation R on a set X is called an equivalence relation iff

R is reflexive, symmetric and transitive.

This notion was constructed on the basis of the EQuality relation. 

We tend to think about equivalent elements as "indistinguishable 

from some point of view".



Examples.

1. EQ, 

2. "equal size" or equipotency relation (set A is related to B iff 

|A|=|B|) on the set of finite subsets of X. 

3. "parallel" relation on the set of all lines on the plane,

4. "equal modulus" in ℂ (𝑧1𝑅𝑧2 iff 𝑧1 = |𝑧2|)

5. congruence mod n on ℤ

6. "concentric" on the set of all balls in ℝ3 (or all spheres).

7. the full relation 𝑅 = 𝑋 × 𝑋



Negative examples.

• < (not reflexive, not symmetric), 

• ≠ (symmetric but neither reflexive nor transitive)

• ≤ and ⊆ (reflexive and transitive but not symmetric) 

• "friends". Assuming everybody are friendly with themselves it is  

reflexive and (hopefully) symmetric but not transitive. 

• "perpendicular" on the set of all lines on the plane (symmetric 
but neither reflexive nor transitive). Notice that 
"perpendicular or parallel" is an equivalence.

• the empty relation on a nonempty set X



With an equivalence relation R defined on X, related elements of X 

are considered equivalent or indistinguishable from some point of 

view. This often (in fact always) means that related (equivalent) 

elements share some parameter or property. Sometimes the property 

is obvious, sometimes less so. 

For example: 

Equipotent sets share the size (the number of elements). 

Parallel lines share direction. 



What property or parameter do congruent integers share? 

Suppose 𝑝 ≡𝑛 𝑡 i.e. 𝑛|𝑝 − 𝑡. From the remainder lemma for 

integers, there exist unique 𝑞𝑝, 𝑞𝑡, 𝑟𝑝 and 𝑟𝑡 such that 𝑝 = 𝑛𝑞𝑝 + 𝑟𝑝,

𝑡 = 𝑛𝑞𝑡 + 𝑟𝑡 and 0 ≤ 𝑟𝑝, 𝑟𝑡 ≤ 𝑛 − 1. Then 𝑝 − 𝑡 = 𝑛 𝑞𝑝 − 𝑞𝑡 +

𝑟𝑝 − 𝑟𝑡 is divisible by n. Since 𝑛 𝑞𝑝 − 𝑞𝑡 is divisible by n, 𝑟𝑝 − 𝑟𝑡
must be as well. From 0 ≤ 𝑟𝑝, 𝑟𝑡 ≤ 𝑛 − 1 we obtain that 

−𝑛 + 1 ≤ 𝑟𝑝 − 𝑟𝑡 ≤ 𝑛 − 1. The only number in this interval 

divisible by n is 0 hence, 𝑟𝑝 = 𝑟𝑡. In other words, numbers 

congruent mod n share the remainder from the division by n. We can 

also say 𝑝 ≡𝑛 𝑡 iff 𝑝 𝑚𝑜𝑑 𝑛 = 𝑡(𝑚𝑜𝑑 𝑛). 


