
EIDMA
Lecture 13

• Eulerian graphs,

• Hamiltonian graphs





Definition. 

An Eulerian cycle in a graph G is a cycle which passes through 

all edges and vertices of G.

Definition.

A graph is said to be Eulerian iff it has an Eulerian cycle.

Fact. (obvious)

Every Eulerian graph G is connected, has at least three vertices 

and each vertex of G has an even degree.



Definition. 

Each maximal connected subgraph of a graph G is called a 

component of G. (Some texts use the term connected 

component which I consider an overkill.)

Definition.

The distance between vertices x and y in G, distG(x,y), is the 

length of a shortest x-y path in G or  if no such path exists.

Fact. (obvious)

Components of G are subgraphs induced by equivalence classes 

of the following relation on V(G): vRu iff distG(x,y) is finite.



Example. 
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Lemma.

If for every vertex v of G deg(v)  2 then G has a cycle.

Proof.

Let P = (𝑣0,𝑣1, … ,𝑣𝑘) be a longest simple path in G. Since deg 𝑣0 ≥ 2,

𝑣0 has a neighbor z, different from 𝑣1. If zP then (z, 𝑣0 ,𝑣1, … ,𝑣𝑘) is a 

simple path longer than P, which is not possible, so z = 𝑣𝑝 for some 

1<pk. Then (𝑣0,𝑣1, … ,𝑣𝑝, 𝑣0) is a cycle in G passing through 𝑣0.



Theorem. (Euler, 1736) 

A graph G is Eulerian iff G has more than 1 vertex, G is 

connected and every vertex of G has an even degree.

Proof. ("" is obvious, we only do "", by induction on n=|E|)

1. A connected graph G with more than one vertex and all even 

degrees must have at least 3 vertices and all degrees at least 

equal 2. So, by the last lemma G, has a cycle. We begin with 

n=3. Th only graph on 3 edges satisfying our conditions is K3

which is obviously Eulerian. 

2. Suppose G has n edges, n>3, G satisfies our conditions and for 

every graph on fewer edges the theorem is true. There are some 

cycles in G due to the Lemma. Denote by C a longest cycle in G. 

If C is an Eulerian cycle we are done. Suppose to the contrary 

that C does not cover all edges. Let e = {x,y} be an edge of G not 

covered by C.



the cycle C
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If there is an edge not used by C then 

there must exist such an egde with at least 

one end-point in C. 

Otherwise, consider the set X consisting 

of the endpoints of all edges not 

belonging to C. Then X and V(C) are 

e
an edge not covered by C

disjoint, nonempty and X  V(C) = V(G), i.e.  X and  V(C) form a 

partition of V(G) and there are no edges between vertices of X and 

those of V(C) – contrary to the partition theorem about connected 

graphs.
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Consider the subgraph G* = G – E(C) obtained by the removal 

from G of all edges of C. In G* every vertex has an even 

degree, some perhaps 0. But the endpoints of the red edges have 

degrees at least 2.
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The component Hz of G* containing z has fewer edges than G does

so, by our induction hypothesis Hz is Eulerian. We denote its 

Eulerian cycle by C*.

C*



the cycle C
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Starting from z we travel along the red cycle C*. When we cover 

whole C* and get back to z we travel the green cycle C thus 

constructing a cycle longer than C – contrary to our claim that C is 

a longest cycle in G.

C*



The proof can easily be transformed into an algorithm for finding 

an Eulerian cycle in a graph G satisfying Euler's conditons: 

• Start from any vertex x0 and construct a cycle passing through 

x0, for example by random walk. Call the cycle C0. If C0 covers 

all edges and vertices - STOP

• Else: create G1 by erasing from G all edges of C0, find a vertex 

x1 of C0 with a positive degree in G1 and construct in G1 a cycle 

C1 through x1

• Repeat until cycle Ck covers all remaining edges.

• Start from x0 and at every intersection go along an edge 

belonging to a Cp with the largest subscript p.



Hamiltonian graphs

The legend of Sir Wiliam R. Hamilton and his game



Hamiltonian cycle in Hamilton's game graph



Definition.

A graph is said to be Hamiltonian iff it contains a simple spanning 

cycle, called a Hamiltonian cycle.

Obviously, every Hamiltonian graph is connected and has all 

vertices of degree at least 2. 

This example shows that it is not enough.



FAQ.

The definitions of Hamiltonian and Eulerian properties seem 

pretty similar. Is there a connections between the two?

Answer. No. On the contrary. Euler's theorem characterizes 

Eulerian graphs. There is no such theorem for Hamiltonian graphs. 

Not yet, anyway.

Comprehension.

Find examples showing that the two properties are logically 

independent (meaning having (or not having) one does not imply 

having (or not having the other)).



NECESSARY CONDITIONS.

Definition.

Let G =(V,E) be a graph and let S be a subset of V. Then G-S is the 

subgraph of G obtained by removing form G all vertices from S 

(together their incident edges, of course).

In other words, G-S is the subgraph of G induced by V\S.

Example

S

G G-S



Theorem.

If G=(V,E) is Hamiltonian then for every k and for every k-element 

subset S of V the number of components in G-S is not greater than k.

Proof.

Every Hamiltonian graph looks like this (green edges)

plus, possibly, some extra edges (red dotted ones). Removing k 

vertices from the green cycle splits the cycle into at most k paths. 

Some of those paths may be connected by red edges making the 

number of components, if anything, smaller.


