Relations, Equivalence relations

- 1. For each of the given relations on $\{1,2,3,6\}$ list all its elements and sketch its graph.
 - a. xRy iff x divides y (in symbols: x|y),
 - b. xRy iff x < y
 - c. xRy iff x=y
 - d. xRy iff $x \neq y$
 - e. x R y iff $x^2 \le y$
 - f. xRy iff x+y is odd
- 2. Determine which of the following relations on $N \setminus \{1\}$ are equivalence relations. Find equivalence classes for those who are.
 - a. xRy iff gcd(x,y) = 1 (gcd stands for "greatest common divisor"
 - b. $x \operatorname{Ry} \operatorname{iff} gcd(x, y) > 1$
 - c. xRy iff lcm(x,y) = xy (gues what lcm stands for)
 - d. xRy iff x divides y
 - e. xRy iff x+y is even
 - f. x Ry iff gcd(x,y) divides lcm(x,y)
 - g. xRy iff lcm(x,y) divides gcd(x,y)
 - h. xRy iff x+y is odd
 - i. $x \mathbf{R} y$ iff x y is odd
- 3. Find all numbers k such that the relation R_k defined on the set of natural numbers as: pR_kq if and only if k/(p+q) is an equivalence relation. For each k for which the answer is YES find the equivalence classes of R_k .
- 4. R_1 and R_2 are equivalence relations on a set X. In each of the following questions, if the answer is YES, describe equivalence classes of the relation in terms of equivalence classes of R_1 and R_2 .
 - a. Is $R_1 \cap R_2$ an equivalence relation on X?
 - b. Is $R_1 ER_2$ an equivalence relation on X?
 - c. Is $\mathbf{R}_1 \setminus \mathbf{R}_2$ an equivalence relation on X?
 - d. Is $R_1 R_2$ an equivalence relation on X'X?
- 5. Show that for every partition p of a set X there exists an equivalence relation on X whose equivalence classes are exactly elements of p.
- 6. Let X denote the set of all 0-1 sequences of length 100. We define the following relation R on X:
 - $aRb \hat{U} |\{i : a(i)=b(i)\}|$ is even
 - Is R an equivalence on X?

If it is, describe its equivalence classes.