Arithmetics mod n

- 1. Prove
- a) $(\forall n, k) \pmod{k} = n \mod k$
- b) $(\forall n,k,p) (n+p) \mod k = (n \mod k + p \mod k) \mod k$
- c) $(\forall n,k,p) (np) \mod k = ((n \mod k)(p \mod k)) \mod k$
- 2. Prove
- a) multiplication mod *n* is associative, i.e. $(a \otimes b) \otimes c = a \otimes (b \otimes c)$.
- b) addition mod *n* is associative.
- c) multiplication mod n is distributive with respect to addition mod n.
- 3. Calculate
- a) 17mod4
- b) 4mod17
- c) (-2)mod5
- 4. Solve equations in indicated sets
- a) $2x = in \mathbb{Z}_7$
- b) 3x=1 in \mathbb{Z}_6
- c) 5x = 1 in **Z**₇
- d) $x^2=3$ in Z_{11}
- e) (2x + 3 = 0) in \mathbb{Z}_5
- f) x+k=0 in \mathbf{Z}_n
- 5. Show that $(Z_n-\{0\}, \bigotimes)$ is a group iff n is a prime.