EXAM 1

2018-JAN-29

- 1. We have unlimited supply of balloons in n colors. Calculate the number of ways to give 2 differently colored balloons to each of k people if
 - a. no 2 people can get the same pair of colors
 - b. no 2 people can get the same color.
- 2. Find the number of permutations of the set A={1, ..., n}, where numbers divisible by 5 are not next to each other.
- 3. Complete the following definitions using ONLY mathematical and logical symbols. For example A set $S = \{v_1, v_2, ..., v_n\}$ is a basis for a vector space V over a field **F** iff

 $((\forall a_1, a_2, \dots, a_n \in \mathbf{K})(a_1v_1 + a_2v_2 + \dots + a_nv_n = \Theta \implies a_1 = a_2 = \dots = a_n = 0)) \& ((\forall w \in V)(\exists b_1, b_2, \dots, b_n \in \mathbf{K}) w = b_1v_1 + b_2v_2 + \dots + b_nv_n)$

a) $n \mod k = p$ iff

b) $\lim_{n\to\infty} a_n = L$ iff

c) (X,\ll) is a poset. An element *p* is a *maximal* element of (X,\ll) iff

- 4. G is a graph whose vertex set is {1,2, ... 100} and whose edge set is {{i,j}: 0<|i-j|<5}.
 (a) Is G connected? (b) Is G Eulerian (c) Is G planar?
- 5. \cong is a relation on the set $\mathbf{R} \times \mathbf{R}$ such that $(x,y) \cong (p,q)$ iff py=xq. Verify if it is an equivalence relation. If it is, describe its equivalence classes.

EXAM 2 2018-FEB-02

- 1. G=(V,E) is a graph such that $V=\{1,2, ..., n\}$ and $E=\{\{i,j\}: |i-j|=1 \lor |i-j|=n-1\}$. Calculate the number of bijections $f: V \to V$ such for every $p,q \in V$ if p is adjacent to q then f(p) or f(q) is even.
- 2. Find the number of sequences consisting of all letters of the word "NOSOLUTIONS" where every two consecutive letters are different..
- 3. Complete the following definitions using ONLY mathematical and logical symbols. For example: W=span(S) F iff (∀w∈W)(∃n∈N)(∃b₁, b₂, ..., b_n∈K)(∃v₁, v₂,...,v_n∈S) w = b₁v₁+ b₂v₂+ ... +b_nv_n. a) a natural number p is a prime iff (do not use the divisibility symbol |)
 b) *R* is an equivalence relation on a set X iff

c) a subset t of the Cartesian product X×Y is an "onto" function iff

- 4. G is a graph whose vertex set is {1,2, ..., 82}, vertices i and j are adjacent iff (i-j) mod 4 = 0 and i≠j.
 (a) Calculate the chromatic number of G (b) Is G Eulerian? (c) Is G planar?
- 5. Prove that the operation of symmetric difference of sets is associative, i.e. for every A,B,C subsets of the universal set X $A \div (B \div C) = (A \div B) \div C$.

COMMITTEE EXAM 2018-FEB-14

- 1. How many numbers *n*, $1 \le n \le 1000000$ have an odd sum of their digits (in decimal notation)?
- 2. In how many ways can you load 27 identical rounds of ammo into 4 identical magazines, each of capacity 13, so that at least 5 rounds go into every magazine?
- 3. (a) Define a connected graph using only mathematical and logical symbols (no words allowed).
 - (b) Prove that every graph with p vertices whose every vertex has degree at least p/2 is connected.
- 4. (a) Quote the definition of a partial order, i.e. complete the statement "a set X is partially ordered by a relation R if and only if …" using only logical and set-theory symbols.
 - (b) Assuming that (X,R) is a poset write (using formal symbols only) that (X,R) has a maximal element.
- 5. Recall that a relation on a set X is a set of ordered pairs of element of X. What is the intersection of the family of all equivalence relations on the set of natural numbers N? *Hint: it is a relation on N but what relation?*