ETMAG, Exam 3, 10.09.2013

Question1	Question2	Question3	Question4	Question5	Sum	Exercises	Total

Name: Index number:

Question 1. (a) Give definition of a continuous function at a given point. Show that if two functions y = f(x) and y = g(x) are continuous at point x_0 then the function y = f(x) + g(x) is also continuous. (b) Check differentiability of the following function at $x_0 = -1$:

$$g(x) = |x+1| \cdot e^{x+1}$$

Question 2. Find all eigenvalues and eigenvectors of the following matrix over \mathbb{R} . For each eigenspace find its basis and dimension.

Name: Index number:

Question 3. (a) Find equation of the tangent line to the graph of the function y = f(x) at x_0 if

$$f(x) = \sqrt[x]{\frac{1}{x}}$$
 and $x_0 = 1$.

(b) Show that $e^x > 1 + x$ for $x \neq 0$.

Question 4. (a) Verify linear independence of the following sets of vectors:

- $\{(1,0,1), (1,1,0), (0,1,1)\}$ in \mathbb{Z}_2^3 over \mathbb{Z}_2 ,
- $\{1, \sin x, e^x\}$ in $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R} .
- (b) Find a formula and the matrix for the linear operator F such that:

$$F(1,0,1) = (1,0,1), F(1,1,0) = F(0,1,1) = (1,1,1)$$

Name: Index number:

Question 5. (a) Calculate

$$\sqrt[8]{-1} \qquad \qquad \left(\frac{1+i}{1-i}\right)^{200}$$

(b) Find all $z \in \mathbb{C}$ satisfying:

 $\mathfrak{Re}(z \cdot (2-i)) + z \cdot \bar{z} = 0$

Notes