Solve the problems on your own, then compare your solutions with mine. TT

Problem 1. (a) Find a Jordan block matrix J similar to $A = \begin{bmatrix} -2 & -1 & -2 & 1 \\ 2 & 0 & 3 & -1 \\ 2 & 0 & 3 & -1 \\ 2 & -2 & 5 & -1 \end{bmatrix}$.

(b) Find a matrix P, such that $J = P^{-1}AP$.

Problem 2. (a) Find a Jordan block matrix J similar to $A = \begin{bmatrix} 4 & -1 & -8 & 3 & 2 \\ 3 & 1 & -8 & 2 & 1 \\ 2 & -1 & -4 & 2 & 1 \\ 5 & -2 & -12 & 5 & 1 \\ 1 & -1 & -4 & 2 & 3 \end{bmatrix}$.

(b) Find a matrix P, such that $J = P^{-1}AP$.

Solution.1.

Part (a) *Step* 1.

Calculate det
$$(A - \lambda I) = det \begin{bmatrix} -2 - \lambda & -1 & -2 & 1 \\ 2 & -\lambda & 3 & -1 \\ 2 & 0 & 3 - \lambda & -1 \\ 2 & -2 & 5 & -1 - \lambda \end{bmatrix} = \lambda^4$$
, hence all four eigenvalues

are equal to zero. *Step* 2.

Step 2.						_			_
						-2	-1	-2	1
Calculate the number of .	2	0	3	-1					
Calculate the number of a	2	0	3	-1					
						2	-2	5	-1
[-2	-1	-2	1		$\left[-2\right]$	-1	-2	1]
(n + n + n + n + n) = nonla	0	-1	1	0	-(r, r, r, 2r) - ronk	0	-1	1	0 -2
$(1_2+1_1,1_3+1_1,1_4+1_1) - 1$ all k	0	-1	1	0	$-(1_3-1_2,1_4-51_2) - 1_{\text{dllK}}$	0	0	0	0 -2.
$(r_2+r_1,r_3+r_1,r_4+r_1) = rank$	0	-3	3	0		0	0	0	0

This means that J has two blocks with diagonal entries 0, but sizes of the blocks may be 2×2 and 2×2 , or 1×1 and 3×3 .

Step 3.

Calculate sizes of Jordan blocks. That requires calculating of ranks of matrices A-0I=A, $(A-0I)^2$ and so on. It turns out that A^2 is the zero matrix, so its rank is 0. Hence, J has 2 blocks of

size at least 2 each that is, J has 2 blocks of size 2 by 2. Hence $J = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Part (b)

Since we have two 2×2 Jordan blocks, our basis R={ v_1, v_2, v_3, v_4 } consists of two eigenvectors v_1 and v_3 and their attached vectors v_2 and v_4 . The attached vectors are those nonzero solutions of A²X= Θ , that do not satisfy AX= Θ . We must also take care to choose the attached vectors in such a way that their eigenvectors are linearly independent. Since A² is the zero matrix, the first system of equations is trivial (Θ = Θ), so the only condition v_2 and v_4 must satisfy is AX= Θ . We can choose v_2 =(1,0,0,0) and v_4 =(0,1,0,0) getting v_1 = A v_2 = (-2,2,2,2) and v_3 = A v_2 = (-1,0,0,-2). These vectors form the columns of the change-of-basis matrix P, hence $P = \begin{bmatrix} -2 & 1 & -1 & 0 \\ 2 & 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

nce
$$P = \begin{bmatrix} 2 & 0 & 0 & 1 \\ 2 & 0 & 0 & 0 \\ 2 & 0 & -2 & 0 \end{bmatrix}$$

Problem 2 . (a) Find a Jordan block matrix J similar to $A =$	2
<u>Troblem 2</u> . (a) This a jordan block matrix \mathbf{j} similar to \mathbf{A} –	2

4	-1	-8	3	2	
3	1	-8	2	1	
2	-1	-4	2	1	
5	-2	-12	5	1	
1	-1	-4	2		

(b) Find a matrix P, such that $J = P^{-1}AP$.

Solution.2.

Part (a) Step 1. Calculate $det(A-\lambda I) = (1-\lambda)(2-\lambda)^4$. Hence the eigenvalues are $\lambda_1 = 1$ and $\lambda_2 = \lambda_3 = \lambda_4 = \lambda_5 = 2$.

Step 2.

Since 1 is an eigenvalue of multiplicity 1, there is one 1×1 block for $\lambda=1$. We need to know $\begin{bmatrix} 2 & -1 & -8 & 3 & 2 \end{bmatrix}$

	4	-1	-0	5	2
	3	-1	-8	2	1
the number of Jordan blocks for λ =2. rank(A-2I) = rank	2	-1	-6	2	1 = 3. This
	5	-2	-12	3	1
	1	-1	-12 -4	2	1

means that J has 5-3 = 2 blocks with diagonal entries 2. Their sizes may be 2×2 and 2×2 or 1×1 and 3×3 .

Step 3.

Calculate sizes of Jordan blocks. That requires calculating of $rank(A-2I)-rank(A-2I)^2$ and, possibly $rank(A-2I)^2$ - $rank(A-2I)^3$. It turns out that $rank(A-I)^2 =$

 $rank \begin{bmatrix} 2 & -1 & -4 & 1 & 0 \\ -2 & 1 & 4 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -4 & 2 & 8 & -2 & 0 \\ 2 & -1 & -4 & 1 & 0 \end{bmatrix} = 1.$ Hence, J has 2 blocks of size at least 2 each that is, J has 2

blocks of size 2×2 and there is no need to calculate $rank(A-2I)^3$ (If you do, you will see that it is equal to one, and each next power of A-2I has the rank of 1, indicating that there are no

	2	1	0	0	0	
	0	2	0	0	0	
blocks of the size 3×3 , 4×4 and so on). Hence $J =$	0	0	2	1	0	
blocks of the size 3×3 , 4×4 and so on). Hence $J =$	0	0	0	2	0	
	0	0	0	0	1	

Part (b)

Since we have two 2×2 Jordan blocks and a single 1×1 block, our basis R={ v_1,v_2,v_3,v_4,v_5 } consists of two eigenvectors v_1 and v_3 for λ =2, their attached vectors v_2 and v_4 and an eigenvector v_5 belonging to the eigenvalue λ =1. The attached vectors are those nonzero solutions of $(A-2I)^2X=\Theta$, that do not satisfy $(A-2I)X=\Theta$. We must also take care to choose the attached vectors in such a way that their eigenvectors are linearly independent. Since *rank*(A-2I)² = 1, the system of equations $(A-2I)^2X=\Theta$ is equivalent to 2x-y-4z+1t+0u=0, meaning u=u and, for example y=2x-4z+t, i.e. the general solution is (x,2x-4z+t,z,t,u) = x(1,2,0,0,0)+z(0,-4,1,0,0)+t(0,1,0,1,0)+u(0,0,0,0,1). These vectors are candidates for both eigenvectors and attached vectors, but attached vectors must also satisfy $(A-2I)X\neq\Theta$. We try $v_4=(0,0,0,0,1)$. From $(A-2I)v_4$ we get $v_3=(2,1,1,1,1)$, it is a nonzero vector, so it is a good candidate for v_3 . If we try using (0,1,0,1,0) for v_2 we are in for trouble because we get then $v_1=(A-2I)(0,1,0,1,0)=(2,1,1,1,1) = v_3$ and vectors from a basis must be linearly independent. So we try another vector, $v_2=(1,2,0,0,0)$. We are getting $v_1=(0,1,0,1-1)$, which is linearly independent with v_3 . All we need now is an eigenvector for λ =1.

		- a - p					5				• • •	
	3	-1	-8	3	2		[1	0	0	0	-1]	
	3	0	-8	2	1		0	1	0	0	1	
A-I=	2	-1	-5	2	1	. A-I is row-equivalent to	0	0	1	0	0	, hence x=u, y=-u,
	5	-2	-12	4	1		0	0	0	1	2	
	1	-1	-4	2	2		0	0	0	0	0	

z=0 and t=-2u. Then the general solution looks like u(1,-1,0,-2,1) and we may use (1,-1,0,-2,1)

2,1) as v_{5.} Finally, our change-of-basis matrix P=
$$\begin{bmatrix} 0 & 1 & 2 & 0 & 1 \\ 1 & 2 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 2 \\ -1 & 0 & 1 & 1 & 1 \end{bmatrix}$$