LAST NAME	FIRST NAME		2015.09.11
ALGEBRA RETAKE EXAM	Time allowed 120 min.	Each task is worth 12 points.	
1. Find the polar form of			
(a) $z = \cos \alpha - i \sin \alpha$	(b) $z = \sin \theta$	$\alpha + i \cos \alpha$	
(c) $\frac{(1-i\sqrt{3})^{100}}{(-1-i)^{200}}$	(d) $z =$	$\sqrt[3]{-64}$ (each of them)	

2. Determine which of the following sets are linearly independent in the indicated vector spaces. Explain. (a) $\{x^4+x^2+x, x^3+x^2, x^4-x^3+x\}$ in **R**[x] over **R** (b) $\{\sin x, \cos x, \cos 2x\}$ in **R**^R over **R**.

3. Find dimensions of the following vector spaces. Justify your answers. (a) The space of all those polynomials from $\mathbf{R}_6[x]$ (*i.e. of degree at most 7*), who have roots at 1 and -1. (b) {(x,y,z,t) $\in \mathbf{R}^4$: x+y = z+t}.

4.
$$A = \begin{bmatrix} 5 & 6 & 3 & -6 \\ 0 & 2 & 0 & 0 \\ -6 & -6 & -4 & 6 \\ 0 & 3 & 0 & -1 \end{bmatrix}$$
 find a diagonal matrix *B* similar to *A*.