LAST NAME	FIRST NAME	
Algebra Final Exam	Time allowed 120 min.	Each task is worth 12 points.
1. Find the polar form of		

(a) $z = \cos \alpha - i \sin \alpha$

(b)
$$\frac{(1-i\sqrt{3})^{100}}{(-1-i)^{200}}$$

(c) $z = \sqrt[3]{-64}$ (each of them)

2. Determine which of the following sets are linearly independent in the indicated vector spaces. Explain. (a) $\{x^4+x^2+x, x^3+x^2, x^4-x^3+x\}$ in **R**[*x*] over **R**

(b) $\{\sin x, \cos^2 x, \cos 2x\}$ in $\mathbb{R}^{\mathbb{R}}$ over \mathbb{R} .

3. Find dimensions of the following vector spaces. Justify your answers.

(a) The space of all those polynomials from $\mathbf{R}_6[x]$ (*i.e. of degree at most 6*), who have roots at 1 and -1.

(b) { $(x,y,z,t) \in \mathbf{R}^4$: x+2y+3z+4t=0 & x+y+z+t=0 }.

4. F(x,y,z,t) = (5x+6y+3z-6t, 2y, -6x-6y-4z+6t, 3y-t). Find a basis S in \mathbb{R}^4 such that $M_S(F)$ is diagonal. Find also the matrix itself.

5. Prove that if A and B are matrices of the same linear operator then det A = det B. *Hint*: det XY= detX detY