NAME

Time 120 min. Each task is 12 points. Include all necessary comments and calculations. SUBMIT THESE SHEETS ONLY. Do not talk, cheat or else ... ! 1. (a) $R = \{r_1, r_2, \dots, r_k\}$ and $S = \{s_1, s_2, \dots, s_k\}$ are bases of some vector space V over a field **K** and φ is a linear operator on V. Quote the definition of $M_S^R(\varphi)$.

- (b) Let $\varphi(x,y,z) = (z,x+y+z,y+z)$. Find $M_S^R(\varphi)$ where $R = \{(1,0,0), (0,1,0), (0,0,1)\}$ and $S = \{(1,1,1), (1,1,0), (0,1,1)\}$. 2. Find the polar form of $z = \left(\frac{\sqrt{3}-1+(\sqrt{3}+1)i}{2-2i}\right)^5$. *Hint. Represent the numerator as a sum of two complex numbers of* equal moduli.
- 3. Is the set $\{(1,1,i),(1+i,1-i,2i),(1,1+i,2i)\}$ linearly independent in \mathbb{C}^3 over \mathbb{C} .
- 4. $A = M_R(F)$ and $B = M_S(F)$. Prove that det $A = \det B$. *Hint*: det $XY = \det X \det Y$.
- 5. (a) Quote the definition of an eigenvalue and eigenvector of a linear operator F.
 - (a) Find P such that D=P⁻¹AP, where D = $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ and A = $\begin{bmatrix} 5 & -1 & 5 \\ -3 & 3 & -5 \\ -3 & 1 & -3 \end{bmatrix}$.