	3	2	-1	-4			2	2	1	1]		6	4	3	6]	
<i>A</i> =	-6	-4	6	5		P	1	2	1	3	<i>C</i> =	5	5	3	2	
	-4	-2	5	2		D =	<i>D</i> –	$B = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \end{vmatrix}$	2	C =	7	6	4	5		
	2	1	-1	-2		1	1	1	1		_4	2	2	4		

1. Find a Jordan block matrix J similar to A.

Solution. Eigenvalues are 1,1,1 and -1. The rank of A-1I is equal to 3, -1 is an eigenvalue of multiplicity 1, so $\begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$

$$J = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$

2. Find P such that $J=P^{-1}AP$.

Solution. We consider A the matrix of some linear operator F with respect to the standard basis S and J that with respect to another basis $R = \{u_1, u_2, u_3, v_1\}$. Our task is, essentially, to construct the basis R. First we find an eigenvector v_1 belonging to λ =-1. This is done by solving (A+I) v_1 = θ . Next we must find vector u_3 such that $(A+I)^3u_3=\theta$ and $(A+I)^2u_3\neq\theta$. Once we find u_3 , we put $u_2=(A+I)u_3$ and $u_1=(A+I)u_2$, and P consists of columns u_1, u_2, u_3 and v_1 . There are infinitely many solutions here, but :

• Row reducing A+I one can see that eigenvectors for λ =-1 look like (t,-2t,0,0), so we may put v₁=(1,-2,0,0).

•
$$(A-I)^2 = \begin{bmatrix} -12 & -8 & 10 & 12 \\ 4 & 6 & -5 & -4 \\ -8 & -4 & 6 & 8 \\ -4 & -2 & 3 & 4 \end{bmatrix}$$
, $(A-I)^3 = \begin{bmatrix} 8 & 8 & -8 & -8 \\ -16 & -16 & 16 & 16 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. We can easily see that $u_3 = (0,1,1,0)$ is a good choice. Then $u_2 = (1,1,2,0)$ and $u_1 = (2,1,2,1)$
Hence, one of infinitely many choices for P is $P = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 1 & 1 & 1 & -2 \\ 2 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$.

3. Solve the matrix equations BX=C. Verify your solution. *Solution.* If B is invertible then $X=B^{-1}C$ (NOT $X=CB^{-1}$, matrix multiplication is not commutative!!!)

$$B^{-1} = \begin{bmatrix} 3 & 1 & -2 & -2 \\ -2 & -1 & 2 & 1 \\ -2 & -1 & 1 & 3 \\ 1 & 1 & -1 & -1 \end{bmatrix}, B^{-1}C = X = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 1 & 1 & 1 & 0 \\ 2 & -1 & 1 & 3 \\ 0 & 1 & 0 & -1 \end{bmatrix}$$

4. F:V \rightarrow W and G:W \rightarrow T are linear mappings. Prove that G \circ F is a linear mapping and ker(F) \subseteq ker(G \circ F). Solution. $G \circ F(v+u) = G(F(v+u)) = G(F(v)+F(u)) = G(F(v)) + G(F(u)) = G \circ F(v) + G \circ F(u)$. Similarly $G \circ F(av) = G(F(av))$ $= G(aF(v))=aG(F(v))=a(G\circ F(v))$, hence GoF is linear.

If $v \in kerF$ then $F(v) = \theta$ and $G(F(v)) = G(\theta) = \theta$, hence $v \in ker(G \circ F)$.

5. Solve (in complex numbers) the equation $(\overline{z})^4 |z|^2 = z^2$.

Solution. Taking modulus of both sides yields $|z|^6 = |z|^2$, which implies |z|=0, i.e. z=0, or |z|=1. Plugging |z|=1 into our original equation results in $(\overline{z})^4 = z^2$. Multiplying both sides by z^4 we get $(\overline{z})^4 z^4 = z^6$, i.e. $z^6 = 1$. You conclude by listing all six roots of 1 of order 6.