1. Number *i* is a root of the equation $z^4-2z^3+3z^2-2z+2=0$. Find the remaining roots. Solution. Since the coefficients are all real, -i is also a root, so the polynomial is divisible by $(z+i)(z-i)=z^2+1$. The division yields the polynomial z^2-2z+2 , whose roots (by standard method) are 1+i and 1-i.

2. Find the Jordan block matrix for
$$A = \begin{bmatrix} 1 & -1 & -1 & 1 \\ 1 & 3 & 1 & -1 \\ 2 & 2 & 3 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
.

Solution. The characteristic polynomial turns is $(2-\lambda)^4$, so all four eigenvalues are equal to 2. The rank(A-2I)=2,

 $(A-2I)^{2} = \begin{bmatrix} -1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \text{ its rank is equal to 1. This means that we have 4-2=2 blocks, out of which 2-1=1 has}$ size at least 2, so J must be equal to $\begin{bmatrix} 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$.

$$3. A = \begin{bmatrix} -1 & 1 & -1 & 0 \\ -2 & -5 & 1 & 1 \\ -2 & -4 & 0 & 1 \\ -6 & -10 & 1 & 2 \end{bmatrix}$$
 is similar to
$$B = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$$
 Find a matrix P, such that
$$B = P^{-1}AP.$$

Solution. Since B is a Jordan block matrix similar to A, eigenvalues of A are the same as those of B, i.e. all are

equal to -1. Since the square of B+I is the zero matrix then so is the square of A+I = $\begin{vmatrix} 0 & 1 & -1 & 0 \\ -2 & -4 & 1 & 1 \\ -2 & -4 & 1$

means the attached vectors v_2 and v_4 can be chosen at random, as long as the resulting eigenvectors $v_1=(A+I)v_2$ and $v_3 = (A+I)v_4$ are linearly independent. A good choice for v_2 and v_4 is, for example, $v_2 = (0,0,1,0)$ and $v_4 = (0,0,0,1)$,

which yields $v_1 = (-1, 1, 1, 1)$ and $v_3 = (0, 1, 1, 3)$. Hence a possible $P = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 0 & 2 & 1 \end{bmatrix}$.

4. T is a linear mapping such that for every linearly independent set S, T(S) is also linearly independent. Prove that T is one-to one.

Solution. If T is not one-to-one, there exist different vectors u and v such that T(u)=T(v). Hence $T(u-v)=\theta$, which contradicts our assumption, because $\{u-v\}$ is linearly independent and $\{\theta\}$ is not.

5. F(1,0,0,0)=(1,1,1,0), F(0,1,0,0)=(1,1,0,1), F(0,0,1,0)=(1,0,1,1) and F(0,0,0,1)=(0,1,1,1), F is a linear operator. Find the matrix of F in the basis $R = \{(1,1,1,0), (1,1,0,1), (1,0,1,1), (0,1,1,1)\}$.

Solution. Denote $v_1 = (1,1,1,0)$, $v_2 = (1,1,0,1)$, $v_3 = (1,0,1,1)$ and $v_4 = (0,1,1,1)$. To find the matrix in question we must calculate $T(v_1)$, express it as a linear combination of v_1, \ldots, v_4 and put the coefficients in the first column. Then do the same for v_2, v_3 and v_4 . For example, $T(v_1)=T(1,1,1,0)=T((1,0,0,0)+(0,1,0,0)+(0,0,1,0)) = T(1,0,0,0) + T(0,1,0,0)$ + $T(0,0,1,0) = (1,1,1,0) + (1,1,0,1) + (1,0,1,1) = v_1 + v_2 + v_3 + 0v_4$. In the same way we obtain $T(v_2) = v_1 + v_2 + 0v_3 + v_4$, $T(v_3) = v_1 + v_2 + 0v_3 + v_4$.

$$= v_1 + 0v_2 + v_3 + v_4 \text{ and } T(v_4) = 0v_1 + v_2 + v_3 + v_4. \text{ Hence } M_R(T) = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}.$$